Skip to main content

Advertisement

Log in

Zementaugmentation in der Wirbelsäulenchirurgie

Cement augmentation in spinal surgery

  • Leitthema
  • Published:
Die Unfallchirurgie Aims and scope Submit manuscript

Zusammenfassung

Knochenzement wird an der Wirbelsäule schon seit 50 Jahren verwendet. In der modernen Wirbelsäulenchirurgie sind die Zementaugmentation osteoporotisch frakturierter Wirbelkörper in Form der Vertebroplastie/Kyphoplastie sowie die Zementaugmentation von Pedikelschrauben bei instrumentierten Eingriffen jedweder Ätiologie als Standardverfahren etabliert. Beide Verfahren sind sehr effektiv, wobei der Nutzen der Vertebroplastie/Kyphoplastie in der Vergangenheit sehr kontrovers diskutiert wurde. Insgesamt treten selten Komplikationen auf. Die relevanteste Komplikation ist die Zementleckage, die in der Mehrzahl der Fälle asymptomatisch bleibt, im schlimmsten Fall aber auch neurologische Schäden oder embolische Ereignisse bis hin zum Kreislaufversagen nach sich ziehen kann. Der Prophylaxe der Zementextravasation kommt daher überragende Bedeutung zu. Risikofaktoren für die Zementleckage und vorbeugende Maßnahmen werden anhand der vorhandenen Literatur in einem umfassenden Review dargestellt.

Abstract

Bone cement has been used in spinal surgery for as long as 50 years. In contemporary spinal surgery, cement augmentation of fractured osteoporotic vertebrae in the form of vertebroplasty/kyphoplasty as well as cement augmentation of pedicle screws in instrumented procedures of any etiology are established as standard procedures. Both procedures are very effective, although the benefits of vertebroplasty/kyphoplasty procedures have been controversially discussed in the past. Overall, complications rarely occur. The most relevant complication is cement leakage, which is asymptomatic in the majority of cases but in the worst case might lead to neurological deficits, embolic events and even circulatory collapse. Prevention of cement leakage is therefore crucial. Risk factors for cement leakage and preventive measures are presented in a comprehensive review based on the available literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Brattström H, Granholm L (2009) Atlanto-axial fusion in rheumatoid arthritis a new method of fixation with wire and bone cement. Acta Orthop Scand 47(6):619–628

    Article  Google Scholar 

  2. Park JB, Rouse GP, Kenner GH, Gendreau CL (2009) Spinal fixation using acrylic bone cement: mechanical property measurements. Biomater Med Devices Artif Organs 6(1):77–84

    Article  Google Scholar 

  3. Galibert P, Deramond H, Rosat P, Gars DL (1987) Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie 33(2):166–168

    CAS  PubMed  Google Scholar 

  4. Garfin SR, Yuan HA, Reiley MA (2001) New technologies in spine. Spine 26(14):1511–1515

    Article  CAS  PubMed  Google Scholar 

  5. Lieberman IH, Dudeney S, Reinhardt M‑K, Bell G (2001) Initial outcome and efficacy of “kyphoplasty” in the treatment of painful osteoporotic vertebral compression fractures. Spine 26(14):1631–1637

    Article  CAS  PubMed  Google Scholar 

  6. Hillmeier J, Meeder PJ, Nöldge G, Kasperk C (2003) Minimal invasive Reposition und innere Stabilisierung osteoporotischer Wirbelkörperfrakturen (Ballonikyphoplastie). Orthop Traumatol 15(4):343–362

    Article  Google Scholar 

  7. Taylor RS, Fritzell P, Taylor RJ (2007) Balloon kyphoplasty in the management of vertebral compression fractures: an updated systematic review and meta-analysis. Eur Spine J 16(8):1085–1100

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mathis JM, Barr JD, Belkoff SM, Barr MS, Jensen ME, Deramond H (2001) Percutaneous vertebroplasty: a developing standard of care for vertebral compression fractures. AJNR Am J Neuroradiol 22(2):373–381

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Weill A, Chiras J, Simon JM, Rose M, Sola-Martinez T, Enkaoua E (1996) Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology 199(1):241–247

    Article  CAS  PubMed  Google Scholar 

  10. Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser C, van Landuyt P (2001) Augmentation of mechanical properties in osteoporotic vertebral bones—a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J 10(2):164–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cai T, Wang F, Nan L, Chen D, Wang S, Feng X et al (2021) Perioperative hidden blood loss in elderly osteoporotic vertebral compression fracture patients with percutaneous vertebroplasty and influencing factors. Geriatr Orthop Surg Rehabil 12:2151459321996178

    PubMed  PubMed Central  Google Scholar 

  12. Klazen CA, Lohle PN, de Vries J, Jansen FH, Tielbeek AV, Blonk MC et al (2010) Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): an open-label randomised trial. Lancet 376(9746):1085–1092

    Article  PubMed  Google Scholar 

  13. Hulme PA, Krebs J, Ferguson SJ, Berlemann U (2006) Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine 31(17):1983–2001

    Article  PubMed  Google Scholar 

  14. Dohm M, Black CM, Dacre A, Tillman JB, Fueredi G, KAVIAR investigators (2014) A randomized trial comparing balloon kyphoplasty and vertebroplasty for vertebral compression fractures due to osteoporosis. AJNR Am J Neuroradiol 35(12):2227–22236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hadjipavlou AG, Tzermiadianos MN, Katonis PG, Szpalski M (2005) Percutaneous vertebroplasty and balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures and osteolytic tumours. Bone Joint J 87(12):1595–1604

    CAS  Google Scholar 

  16. Palmowski Y, Balmer S, Hu Z, Winkler T, Schnake KJ, Kandziora F et al (2020) Relationship between the OF classification and radiological outcome of osteoporotic vertebral fractures after kyphoplasty. Global Spine J. https://doi.org/10.1177/2192568220964051

    Article  PubMed  PubMed Central  Google Scholar 

  17. Feng L, Shen J‑M, Feng C, Chen J, Wu Y (2017) Comparison of radiofrequency kyphoplasty (RFK) and balloon kyphoplasty (BKP) in the treatment of vertebral compression fractures. Medicine 96(25):e7150

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rotter R, Martin H, Fuerderer S, Gabl M, Roeder C, Heini P et al (2010) Vertebral body stenting: a new method for vertebral augmentation versus kyphoplasty. Eur Spine J 19(6):916–923

    Article  PubMed  PubMed Central  Google Scholar 

  19. Werner CML, Osterhoff G, Schlickeiser J, Jenni R, Wanner GA, Ossendorf C et al (2013) Vertebral body stenting versus kyphoplasty for the treatment of osteoporotic vertebral compression fractures. J Bone Joint Surg Am 95(7):577–584

    Article  PubMed  Google Scholar 

  20. Kim H‑J, Zuckerman SL, Cerpa M, Yeom JS, Lehman RA, Lenke LG (2020) Incidence and risk factors for complications and mortality after vertebroplasty or kyphoplasty in the osteoporotic vertebral compression fracture—analysis of 1,932 cases from the American college of surgeons national surgical quality improvement. Global Spine J. https://doi.org/10.1177/2192568220976355

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lindsey RW, Harper A (2017) Spinal epidural hematoma. JBJS Case Connect 7(1):e18

    Article  PubMed  Google Scholar 

  22. Schmidt R, Cakir B, Mattes T, Wegener M, Puhl W, Richter M (2005) Cement leakage during vertebroplasty: an underestimated problem? Eur Spine J 14(5):466–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sidhu GS, Kepler CK, Savage KE, Eachus B, Albert TJ, Vaccaro AR (2013) Neurological deficit due to cement extravasation following a vertebral augmentation procedure: case report. J Neurosurg Spine 19(1):61–70

    Article  PubMed  Google Scholar 

  24. Guo H, Huang H, Shao Y, Qin Q, Liang D, Zhang S et al (2021) Risk factors for pulmonary cement embolism (PCE) after polymethylmethacrylate augmentation: analysis of 32 PCE cases. Neurospine 18(4):806–815

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang T, Wang Y, Zhang P, Xue F, Zhang D, Jiang B (2022) What are the risk factors for adjacent vertebral fracture after vertebral augmentation? A meta-analysis of published studies. Global Spine J 12(1):130–141

    Article  PubMed  Google Scholar 

  26. Nieuwenhuijse MJ, Muijs SPJ, van Erkel AR, Dijkstra SPD (2010) A clinical comparative study on low versus medium viscosity polymethylmetacrylate bone cement in percutaneous vertebroplasty. Spine 35(20):E1037–1044

    Article  PubMed  Google Scholar 

  27. Chen WC, Tsai SHL, Goyal A, Fu T‑S, Lin T‑Y, Bydon M (2021) Comparison between vertebroplasty with high or low viscosity cement augmentation or kyphoplasty in cement leakage rate for patients with vertebral compression fracture: a systematic review and network meta-analysis. Eur Spine J 30(9):2680–2690

    Article  PubMed  Google Scholar 

  28. Greene DL, Isaac R, Neuwirth M, Bitan FD (2007) The eggshell technique for prevention of cement leakage during kyphoplasty. J Spinal Disord Tech 20(3):229–232

    Article  PubMed  Google Scholar 

  29. Hoppe S, Elfiky T, Keel MJB, Aghayev E, Ecker TM, Benneker LM (2016) Lavage prior to vertebral augmentation reduces the risk for cement leakage. Eur Spine J 25(11):3463–3469

    Article  PubMed  Google Scholar 

  30. Groen RJM, du Toit DF, Phillips FM, Hoogland PVJM, Kuizenga K, Coppes MH et al (2004) Anatomical and pathological considerations in percutaneous vertebroplasty and kyphoplasty: a reappraisal of the vertebral venous system. Spine 29(13):1465–1471

    Article  PubMed  Google Scholar 

  31. McCall T, Cole C, Dailey A (2008) Vertebroplasty and kyphoplasty: a comparative review of efficacy and adverse events. Curr Rev Musculoskelet Med 1(1):17–23

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mudano AS, Bian J, Cope JU, Curtis JR, Gross TP, Allison JJ et al (2008) Vertebroplasty and kyphoplasty are associated with an increased risk of secondary vertebral compression fractures: a population-based cohort study. Osteoporos Int 20(5):819–826

    Article  PubMed  PubMed Central  Google Scholar 

  33. Song D, Meng B, Gan M, Niu J, Li S, Chen H et al (2014) The incidence of secondary vertebral fracture of vertebral augmentation techniques versus conservative treatment for painful osteoporotic vertebral fractures: a systematic review and meta-analysis. Acta Radiol 56(8):970–979

    Article  PubMed  Google Scholar 

  34. Silverman SL (1992) The clinical consequences of vertebral compression fracture. Bone 13:S27–31

    Article  PubMed  Google Scholar 

  35. Uppin AA, Hirsch JA, Centenera LV, Pfiefer BA, Pazianos AG, Choi IS (2003) Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 226(1):119–124. https://doi.org/10.1148/radiol.2261011911

    Article  PubMed  Google Scholar 

  36. Trout AT, Kallmes DF, Kaufmann TJ (2006) New fractures after vertebroplasty: adjacent fractures occur significantly sooner. AJNR Am J Neuroradiol 27(1):217–223

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen W‑J, Kao Y‑H, Yang S‑C, Yu S‑W, Tu Y‑K, Chung K‑C (2010) Impact of cement leakage into disks on the development of adjacent vertebral compression fractures. J Spinal Disord Tech 23(1):35–39

    Article  PubMed  Google Scholar 

  38. Lin EP, Ekholm S, Hiwatashi A, Westesson P‑L (2004) Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. AJNR Am J Neuroradiol 25(2):175–180

    PubMed  PubMed Central  Google Scholar 

  39. Buchbinder R, Osborne RH, Ebeling PR, Wark JD, Mitchell P, Wriedt C et al (2009) A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med 361(6):557–568

    Article  CAS  PubMed  Google Scholar 

  40. Kallmes DF, Comstock BA, Heagerty PJ, Turner JA, Wilson DJ, Diamond TH et al (2009) A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med 361(6):569–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aebi M (2009) Vertebroplasty: about sense and nonsense of uncontrolled “controlled randomized prospective trials.”. Eur Spine J 18(9):1247–1248

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kroon F, Staples M, Ebeling PR, Wark JD, Osborne RH, Mitchell PJ et al (2014) Two-year results of a randomized placebo-controlled trial of vertebroplasty for acute osteoporotic vertebral fractures. J Bone Miner Res 29(6):1346–1355

    Article  PubMed  Google Scholar 

  43. Firanescu CE, de Vries J, Lodder P, Venmans A, Schoemaker MC, Smeet AJ et al (2018) Vertebroplasty versus sham procedure for painful acute osteoporotic vertebral compression fractures (VERTOS IV): randomised sham controlled clinical trial. BMJ 361:k1551

    Article  PubMed  PubMed Central  Google Scholar 

  44. Luo W, Cui C, Pourtaheri S, Garfin S (2018) Efficacy of vertebral augmentation for vertebral compression fractures: a review of meta-analyses. Spine Surg Relat Res 2(3):163–168

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yuan W‑H, Hsu H‑C, Lai K‑L (2016) Vertebroplasty and balloon kyphoplasty versus conservative treatment for osteoporotic vertebral compression fractures. Medicine 95(31):e4491

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li L, Ren J, Liu J, Wang H, Wang X, Liu Z et al (2015) Results of vertebral augmentation treatment for patients of painful osteoporotic vertebral compression fractures: a meta-analysis of eight randomized controlled trials. PLoS ONE 10(9):e138126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Chen D, An Z‑Q, Song S, Tang J‑F, Qin H (2014) Percutaneous vertebroplasty compared with conservative treatment in patients with chronic painful osteoporotic spinal fractures. J Clin Neurosci 21(3):473–477

    Article  PubMed  Google Scholar 

  48. Liu J, Li X, Tang D, Cui X, Li X, Yao M et al (2013) Comparing pain reduction following vertebroplasty and conservative treatment for osteoporotic vertebral compression fractures: a meta-analysis of randomized controlled trials. Pain Physician 16(5):455–464

    PubMed  Google Scholar 

  49. Anderson PA, Froyshteter AB, Tontz WL (2013) Meta-analysis of vertebral augmentation compared with conservative treatment for osteoporotic spinal fractures. J Bone Miner Res 28(2):372–382

    Article  PubMed  Google Scholar 

  50. Shi M, Cai X, Lin T, Wang W, Yan S (2012) Is there really no benefit of vertebroplasty for osteoporotic vertebral fractures? A meta-analysis. Clin Orthop Relat Res 470(10):2785–2799

    Article  PubMed  PubMed Central  Google Scholar 

  51. Clark W, Bird P, Gonski P, Diamond TH, Smerdely P, McNeil HP et al (2016) Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 388(10052):1408–1416

    Article  PubMed  Google Scholar 

  52. Wardlaw D, Cummings SR, Meirhaeghe JV, Bastian L, Tillman JB, Ranstam J et al (2009) Efficacy and safety of balloon kyphoplasty compared with non-surgical care for vertebral compression fracture (FREE): a randomised controlled trial. Lancet 373(9668):1016–1024

    Article  PubMed  Google Scholar 

  53. Vaccaro AR, Oner C, Kepler CK, Dvorak M, Schnake K, Bellabarba C et al (2013) AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine 38(23):2028–2037

    Article  PubMed  Google Scholar 

  54. Becker S, Chavanne A, Spitaler R, Kropik K, Aigner N, Ogon M et al (2008) Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J 17(11):1462–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT et al (1986) A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res 203(203):99–112

    Google Scholar 

  56. Wittenberg RH, Shea M, Swartz DE, Lee KS, White AA, Hayes WC (1991) Importance of bone mineral density in instrumented spine fusions. Spine 16(6):647–652

    Article  CAS  PubMed  Google Scholar 

  57. Wuisman PIJM, Dijk MV, Staal H, Royen BJV (2000) Augmentation of (pedicle) screws with calcium apatite cement in patients with severe progressive osteoporotic spinal deformities: an innovative technique. Eur Spine J 9(6):528–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elder BD, S‑FL L, Holmes C, Goodwin CR, Kosztowski TA, Lina IA et al (2015) The biomechanics of pedicle screw augmentation with cement. Spine J 15(6):1432–1445

    Article  PubMed  Google Scholar 

  59. Sarzier JS, Evans AJ, Cahill DW (2002) Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg Spine 96(3):309–312

    Article  Google Scholar 

  60. Tan Q, Wu J, Peng F, Zang Y, Li Y, Zhao X et al (2016) Augmented PMMA distribution: improvement of mechanical property and reduction of leakage rate of a fenestrated pedicle screw with diameter-tapered perforations. J Neurosurg Spine 24(6):971–977

    Article  PubMed  Google Scholar 

  61. Schulze M, Riesenbeck O, Vordemvenne T, Raschke MJ, Evers J, Hartensuer R et al (2020) Complex biomechanical properties of non-augmented and augmented pedicle screws in human vertebrae with reduced bone density. BMC Musculoskelet Disord 21(1):151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Frankel BM, D’Agostino S, Wang C (2007) A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation. J Neurosurg Spine 7(1):47–53

    Article  PubMed  Google Scholar 

  63. Liu D, Zhang B, Xie Q, Kang X, Zhou J, Wang C et al (2016) Biomechanical comparison of pedicle screw augmented with different volumes of polymethylmethacrylate in osteoporotic and severely osteoporotic cadaveric lumbar vertebrae: an experimental study. Spine J 16(9):1124–1132

    Article  PubMed  Google Scholar 

  64. Paré PE, Chappuis JL, Rampersaud R, Agarwala AO, Perra JH, Erkan S et al (2011) Biomechanical evaluation of a novel fenestrated pedicle screw augmented with bone cement in osteoporotic spines. Spine 36(18):E1210–1214

    Article  PubMed  Google Scholar 

  65. Bostelmann R, Keiler A, Steiger HJ, Scholz A, Cornelius JF, Schmoelz W (2017) Effect of augmentation techniques on the failure of pedicle screws under cranio-caudal cyclic loading. Eur Spine J 26(1):181–188

    Article  PubMed  Google Scholar 

  66. Tang Y, Guo H, Guo D, Luo P, Li Y, Mo G et al (2020) Effect and potential risks of using multilevel cement-augmented pedicle screw fixation in osteoporotic spine with lumbar degenerative disease. BMC Musculoskelet Disord 21(1):274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Seo JH, Ju CI, Kim SW, Kim JK, Shin H (2012) Clinical efficacy of bone cement augmented screw fixation for the severe osteoporotic spine. Korean J Spine 9(2):79–84

    Article  PubMed  PubMed Central  Google Scholar 

  68. Saman AE, Meier S, Sander A, Kelm A, Marzi I, Laurer H (2013) Reduced loosening rate and loss of correction following posterior stabilization with or without PMMA augmentation of pedicle screws in vertebral fractures in the elderly. Eur J Trauma Emerg Surg 39(5):455–460

    Article  PubMed  Google Scholar 

  69. Rometsch E, Spruit M, Zigler JE, Menon VK, Ouellet JA, Mazel C et al (2020) Screw-related complications after instrumentation of the osteoporotic spine: a systematic literature review with meta-analysis. Global Spine J 10(1):69–88

    Article  PubMed  Google Scholar 

  70. Bullmann V, Schmoelz W, Richter M, Grathwohl C, Schulte TL (2010) Revision of cannulated and perforated cement-augmented pedicle screws: a biomechanical study in human cadavers. Spine 35(19):E932–939

    Article  PubMed  Google Scholar 

  71. Blattert TR, Glasmacher S, Riesner H‑J, Josten C (2009) Revision characteristics of cement-augmented, cannulatedfenestrated pedicle screws in the osteoporotic vertebral body: a biomechanical in vitro investigation: technical note. J Neurosurg Spine 11(1):23–27

    Article  PubMed  Google Scholar 

  72. Mueller JU, Baldauf J, Marx S, Kirsch M, Schroeder HWS, Pillich DT (2016) Cement leakage in pedicle screw augmentation: a prospective analysis of 98 patients and 474 augmented pedicle screws. J Neurosurg Spine 25(1):103–109

    Article  PubMed  Google Scholar 

  73. Guo H, Tang Y, Guo D, Zhang S, Li Y, Mo G et al (2019) The cement leakage in cement-augmented pedicle screw instrumentation in degenerative lumbosacral diseases: a retrospective analysis of 202 cases and 950 augmented pedicle screws. Eur Spine J 28(7):1661–1669

    Article  PubMed  Google Scholar 

  74. Janssen I, Ryang Y‑M, Gempt J, Bette S, Gerhardt J, Kirschke JS et al (2017) Risk of cement leakage and pulmonary embolism by bone cement-augmented pedicle screw fixation of the thoracolumbar spine. Spine J 17(6):837–844

    Article  PubMed  Google Scholar 

  75. Hu M‑H, Wu HTH, Chang M‑C, Yu W‑K, Wang S‑T, Liu C‑L (2011) Polymethylmethacrylate augmentation of the pedicle screw: the cement distribution in the vertebral body. Eur Spine J 20(8):1281

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Schleicher.

Ethics declarations

Interessenkonflikt

Dr. Philipp Schleicher erhielt Vortragshonorare und Beraterhonorare der Firma Aesculap AG, Tuttlingen, DE (ohne Zusammenhang zum Thema der Publikation). Dr. Philipp Schleicher ist Mitglied der AG Osteoporotische Frakturen der Sektion Wirbelsäule der Deutschen Gesellschaft für Orthopädie und Unfallchirurgie, Mitglied der Deutschen Wirbelsäulengesellschaft, Mitglied der AOSpine. A. Wengert, J. Neuhoff und F. Kandziora geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Dankward Höntzsch, Tübingen

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schleicher, P., Wengert, A., Neuhoff, J. et al. Zementaugmentation in der Wirbelsäulenchirurgie. Unfallchirurgie 125, 460–466 (2022). https://doi.org/10.1007/s00113-022-01188-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-022-01188-7

Schlüsselwörter

Keywords

Navigation