Skip to main content
Log in

Mechanobiologie der Frakturheilung Teil 1

Grundlagen

Mechanobiology of fracture healing part 1

Principles

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Dass die Stabilität der Osteosynthese den Verlauf der Frakturheilung beeinflusst, ist unumstritten. Nicht bekannt war bisher jedoch, nach welchen Regeln die mechanischen Bedingungen die Knochenheilung steuern. Dadurch war es bisher nicht möglich, Osteosynthesen gezielt biomechanisch zu optimieren. In diesem Artikel wird beschrieben, wie Stabilität, interfragmentäre Bewegung und interfragmentäre Gewebedehnungen zusammenhängen und die zellulären Prozesse bei der Gewebedifferenzierung in der Knochenheilungszone beeinflussen. Es wird eine Gewebedifferenzierungshypothese dargestellt, die unter Berücksichtigung tierexperimenteller Studien, zellbiomechanischer Untersuchungen und numerischer Verfahren entwickelt wurde. Diese Gewebedifferenzierungshypothese erlaubt es, desmale und enchondrale Knochenneubildung in Abhängigkeit von den mechanischen Bedingungen im Frakturheilungsgebiet vorauszusagen. Dadurch wird die Möglichkeit eröffnet, die Stabilität der Osteosynthesen gezielt auszuwählen, um eine gute Knochenheilung zu erreichen.

Abstract

It is undisputed that the stability of fracture fixation influences the fracture healing process; however, up until now the mechanical conditions which guide bone healing were unknown and it was therefore not possible to optimize the design of fracture fixation devices. This article presents how the stability of fracture fixation, interfragmentary movement and interfragmentary tissue strain depend on each other and how the mechanical environment influences the cellular processes in the healing tissue. A tissue transformation hypothesis is presented which was developed taking into consideration the results of animal experimental studies, cellular biomechanical investigations and numerical methods. This tissue differentiation hypothesis allows the prediction of bone healing by intramembranous and endochondral bone formation as a function of the local mechanical environment in the fracture healing zone. This allows the possibility for selection of a fracture fixation stability to achieve high-quality bone healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Augat P, Burger J, Schorlemmer S et al (2003) Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res 21:1011–1017

    Article  PubMed  Google Scholar 

  2. Bergmann G, Graichen F, Rohlmann A (1999) Hip joint forces in sheep. J Biomech 32:769–777

    Article  CAS  PubMed  Google Scholar 

  3. Bottlang M, Lesser M, Koerber J et al (2010) Far cortical locking can improve healing of fractures stabilized with locking plates. J Bone Joint Surg Am 92:1652–1660

    Article  PubMed  PubMed Central  Google Scholar 

  4. Buschmann MD, Gluzband YA, Grodzinsky AJ et al (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 108(Pt 4):1497–1508

    CAS  PubMed  Google Scholar 

  5. Campbell JJ, Lee DA, Bader DL (2006) Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology 43:455–470

    PubMed  Google Scholar 

  6. Cheal EJ, Mansmann KA, Digioia AMD et al (1991) Role of interfragmentary strain in fracture healing: ovine model of a healing osteotomy. J Orthop Res 9:131–142

    Article  CAS  PubMed  Google Scholar 

  7. Claes L, Augat P, Suger G et al (1997) Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 15:577–584

    Article  CAS  PubMed  Google Scholar 

  8. Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8:133–143

    Article  CAS  PubMed  Google Scholar 

  9. Claes L, Reusch M, Wehner T et al (2010) Metaphyseal fracture-healing follows similar biomechanical rules as diaphyseal healing. In: 17th Congress of the European Society of Biomechanics (ESB). ESB, Edinburgh

    Google Scholar 

  10. Claes LE, Cunningham JL (2009) Monitoring the mechanical properties of healing bone. Clin Orthop Relat Res 467:1964–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32:255–266

    Article  CAS  PubMed  Google Scholar 

  12. Claes LE, Heigele CA, Neidlinger-Wilke C et al (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 355S:S132–S147

    Article  Google Scholar 

  13. Claes LE, Wilke HJ, Augat P et al (1995) Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin Biomech (Bristol, Avon) 10:227–234

    Article  CAS  Google Scholar 

  14. Claudi BF, Oedekoven G (1991) „Biologische“ Osteosynthesen. Chirurg 62:367–377

    CAS  PubMed  Google Scholar 

  15. Cullinane DM, Fredrick A, Eisenberg SR et al (2002) Induction of a neoarthrosis by precisely controlled motion in an experimental mid-femoral defect. J Orthop Res 20:579–586

    Article  PubMed  Google Scholar 

  16. Einhorn TA, Gerstenfeld LC (2015) Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11:45–54

    Article  PubMed  Google Scholar 

  17. Gaston MS, Simpson AH (2007) Inhibition of fracture healing. J Bone Joint Surg Br 89:1553–1560

    Article  CAS  PubMed  Google Scholar 

  18. Gerber C, Mast JW, Ganz R (1990) Biological internal fixation of fractures. Arch Orthop Trauma Surg 109:295–303

    Article  CAS  PubMed  Google Scholar 

  19. Goodship AE, Kenwright J (1985) The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br 67B:650–655

    Google Scholar 

  20. Haffner-Luntzer M, Liedert A, Ignatius A (2015) Mechanobiology and bone metabolism: clinical relevance for fracture treatment. Unfallchirurg 118:1000–1006

    Article  CAS  PubMed  Google Scholar 

  21. Haudenschild AK, Hsieh AH, Kapila S et al (2009) Pressure and distortion regulate human mesenchymal stem cell gene expression. Ann Biomed Eng 37:492–502

    Article  PubMed  Google Scholar 

  22. Hente R, Füchtmeier B, Schlegel U et al (2004) The influence of cyclic compression and distraction on the healing of experimental tibial fractures. J Orthop Res 22:709–715

    Article  CAS  PubMed  Google Scholar 

  23. Huang CY, Hagar KL, Frost LE et al (2004) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22:313–323

    Article  CAS  PubMed  Google Scholar 

  24. Jarry L, Uhthoff HK (1971) Differences in healing of metaphyseal and diaphyseal fractures. Can J Surg 14:127–135

    CAS  PubMed  Google Scholar 

  25. Kaspar D, Neidlinger-Wilke C, Holbein O et al (2003) Mitogens are increased in the systemic circulation during bone callus healing. J Orthop Res 21:320–325

    Article  CAS  PubMed  Google Scholar 

  26. Kaspar D, Seidl W, Neidlinger-Wilke C et al (2002) Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J Biomech 35:873–880

    Article  PubMed  Google Scholar 

  27. Kaspar D, Seidl W, Neidlinger-Wilke C et al (2000) Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech 33:45–51

    Article  CAS  PubMed  Google Scholar 

  28. Kaspar K, Schell H, Seebeck P et al (2005) Angle stable locking reduces interfragmentary movements and promotes healing after unreamed nailing. Study of a displaced osteotomy model in sheep tibiae. J Bone Joint Surg Am 87:2028–2037

    CAS  PubMed  Google Scholar 

  29. Kearney EM, Prendergast PJ, Campbell VA (2008) Mechanisms of strain-mediated mesenchymal stem cell apoptosis. J Biomech Eng 130:061004

    Article  CAS  PubMed  Google Scholar 

  30. Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today 90:75–85

    Article  CAS  PubMed  Google Scholar 

  31. Kenwright J, Goodship A, Evans M (1984) The influence of intermittent micromovement upon the healing of experimental fractures. Orthopedics 7:481–484

    CAS  PubMed  Google Scholar 

  32. Kenwright J, Goodship AE (1989) Controlled mechanical stimulation in the treatment of tibial fractures. Clin Orthop 241(241):36–47

    Google Scholar 

  33. Klein P, Opitz M, Schell H et al (2004) Comparison of unreamed nailing and external fixation of tibial diastases – mechanical conditions during healing and biological outcome. J Orthop Res 22:1072–1078

    Article  CAS  PubMed  Google Scholar 

  34. Klein P, Schell H, Streitparth F et al (2003) The initial phase of fracture healing is specifically sensitive to mechanical conditions. J Orthop Res 21:662–669

    Article  PubMed  Google Scholar 

  35. Le AX, Miclau T, Hu D et al (2001) Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res 19:78–84

    Article  CAS  PubMed  Google Scholar 

  36. Lee DA, Bader DL (1997) Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res 15:181–188

    Article  PubMed  Google Scholar 

  37. Liedert A, Kreja L, Wagner L et al (2010) Signaltransduktionswege der Mechanotransduktion in Knochenzellen. Osteologie 19:240–244

    Google Scholar 

  38. Lienau J, Schmidt-Bleek K, Peters A et al (2010) Insight into the molecular pathophysiology of delayed bone healing in a sheep model. Tissue Eng Part A 16:191–199

    Article  CAS  PubMed  Google Scholar 

  39. Markel MD, Bogdanske JJ (1994) The effect of increasing gap width on localized densitometric changes within tibial ostectomies in a canine model. Calcif Tissue Int 54:155–159

    Article  CAS  PubMed  Google Scholar 

  40. Mauck RL, Soltz MA, Wang CC et al (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122:252–260

    Article  CAS  PubMed  Google Scholar 

  41. Miyanishi K, Trindade MC, Lindsey DP et al (2006) Dose- and time-dependent effects of cyclic hydrostatic pressure on transforming growth factor-beta3-induced chondrogenesis by adult human mesenchymal stem cells in vitro. Tissue Eng 12:2253–2262

    Article  CAS  PubMed  Google Scholar 

  42. Morgan EF, Salisbury Palomares KT, Gleason RE et al (2010) Correlations between local strains and tissue phenotypes in an experimental model of skeletal healing. J Biomech 43:2418–2424

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ode A, Duda GN, Geissler S et al (2014) Interaction of age and mechanical stability on bone defect healing: an early transcriptional analysis of fracture hematoma in rat. PLOS ONE 9:e106462

    Article  PubMed  PubMed Central  Google Scholar 

  44. Palomares KT, Gleason RE, Mason ZD et al (2009) Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J Orthop Res 27:1123–1132

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pauwels F (1960) A new theory on the influence of mechanical stimuli on the differentiation of supporting tissue. The tenth contribution to the functional anatomy and causal morphology of the supporting structure. Z Anat Entwicklungsgesch 121:478–515

    Article  CAS  PubMed  Google Scholar 

  46. Pelaez D, Huang CY, Cheung HS (2009) Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev 18:93–102

    Article  CAS  PubMed  Google Scholar 

  47. Perren SM (2002) Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br 84:1093–1110

    Article  PubMed  Google Scholar 

  48. Perren SM, Allgower M, Cordey J et al (1973) Developments of compression plate techniques for internal fixation of fractures. Prog Surg 12:152–179

    Article  CAS  PubMed  Google Scholar 

  49. Perren SM, Cordey J (1977) Tissue differences in fracture healing. Unfallheilkunde 80:161–164

    CAS  PubMed  Google Scholar 

  50. Salisbury Palomares KT, Gerstenfeld LC, Wigner NA et al (2010) Transcriptional profiling and biochemical analysis of mechanically induced cartilaginous tissues in a rat model. Arthritis Rheum 62:1108–1118

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schell H, Thompson MS, Bail HJ et al (2008) Mechanical induction of critically delayed bone healing in sheep: radiological and biomechanical results. J Biomech 41:3066–3072

    Article  PubMed  Google Scholar 

  52. Schenk RK (1978) Die Histologie der primären Knochenheilung im Lichte neuer Konzeptionen über den Knochenumbau. Unfallheilkunde 81:219–227

    CAS  PubMed  Google Scholar 

  53. Simon U, Augat P, Utz M et al (2011) A numerical model of the fracture healing process that describes tissue development and revascularisation. Comput Methods Biomech Biomed Engin 41:79–93

    Article  Google Scholar 

  54. Steiner M, Claes L, Ignatius A et al (2013) Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli. J R Soc Interface 10:20130389

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stürmer KM, Rack T, Kauer F (1990) Intravitale Bewegungsmessung bei der Frakturheilung. Unfallheilkunde 212:489–498

    Google Scholar 

  56. Sumanasinghe RD, Bernacki SH, Loboa EG (2006) Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng 12:3459–3465

    Article  CAS  PubMed  Google Scholar 

  57. Wissing H, Stürmer KM, Breidenstein G (1990) Die Wertigkeit verschiedener Versuchstierspecies für experimentelle Untersuchungen am Knochen. Unfallheilkunde 212:479–488

    Google Scholar 

Download references

Danksagung

Mein Dank gilt allen ehemaligen Mitarbeitern, die aktiv an der mechanobiologischen Forschung zur Frakturheilung beteiligt waren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Claes.

Ethics declarations

Interessenkonflikt

L. Claes gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

L. Claes, Ulm

W. Mutschler, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claes, L. Mechanobiologie der Frakturheilung Teil 1. Unfallchirurg 120, 14–22 (2017). https://doi.org/10.1007/s00113-016-0280-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-016-0280-3

Schlüsselwörter

Keywords

Navigation