Skip to main content
Log in

Monitoring the Mechanical Properties of Healing Bone

  • Symposium: Biomechanics of Bone Healing
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Fracture healing is normally assessed through an interpretation of radiographs, clinical evaluation, including pain on weight bearing, and a manual assessment of the mobility of the fracture. These assessments are subjective and their accuracy in determining when a fracture has healed has been questioned. Viewed in mechanical terms, fracture healing represents a steady increase in strength and stiffness of a broken bone and it is only when these values are sufficiently high to support unrestricted weight bearing that a fracture can be said to be healed. Information on the rate of increase of the mechanical properties of a healing bone is therefore valuable in determining both the rate at which a fracture will heal and in helping to define an objective and measurable endpoint of healing. A number of techniques have been developed to quantify bone healing in mechanical terms and these are described and discussed in detail. Clinical studies, in which measurements of fracture stiffness have been used to identify a quantifiable end point of healing, compare different treatment methods, predictably determine whether a fracture will heal, and identify factors which most influence healing, are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–B
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Augat P, Merk J, Genant HK, Claes L. Quantitative assessment of experimental fracture repair by peripheral computed tomography. Calcif Tissue Int. 1997;60:194–199.

    Article  PubMed  CAS  Google Scholar 

  2. Bourgois R, Burny F. Measurement of the stiffness of fracture callus in vivo. A theoretical study. J Biomech. 1972;5:85–91.

    Article  PubMed  CAS  Google Scholar 

  3. Burny F. Study of consolidation of fractures by deformation gauges in clinical medicine. Acta Orthop Belg. 1968;34:917–927.

    PubMed  CAS  Google Scholar 

  4. Burny F, Donkerwolcke M, Bourgois R, Domb M, Saric O. Twenty years experience in fracture healing measurement with strain gauges. Orthopedics. 1984;7:1823–1826.

    Google Scholar 

  5. Cattermole HC, Cook JE, Fordham JN, Muckle DS, Cunningham JL. Bone mineral changes during tibial fracture healing. Clin Orthop Relat Res. 1997;339:190–196.

    Article  PubMed  Google Scholar 

  6. Chehade MJ, Pohl AP, Pearcy MJ, Nawana N. Clinical implications of stiffness and strength changes in fracture healing. J Bone Joint Surg Br. 1997;79:9–12.

    Article  PubMed  CAS  Google Scholar 

  7. Claes L. Measuring bone healing in osteosynthesis with external fixator using the Fraktometer FM 100 [in German]. Chirurg. 1991;62:354–355.

    PubMed  CAS  Google Scholar 

  8. Claes L, Grass R, Schmickal T, Kisse B, Eggers C, Gerngross H, Mutschler W, Arand M, Wintermeyer T, Wentzensen A. Monitoring and healing analysis of 100 tibial shaft fractures. Langenbecks Arch Surg. 2002;387:146–152.

    Article  PubMed  CAS  Google Scholar 

  9. Claes LE, Heigele CA. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech. 1999;32:255–266.

    Article  PubMed  CAS  Google Scholar 

  10. Cunningham JL, Evans M, Harris JD, Kenwright J. The measurement of stiffness of fractures treated with external fixation. Eng Med. 1987;16:229–232.

    Article  PubMed  CAS  Google Scholar 

  11. Cunningham JL, Kenwright J, Kershaw CJ. Biomechanical measurement of fracture healing. J Med Eng Technol. 1990;14:92–101.

    Article  PubMed  CAS  Google Scholar 

  12. De Bastiani G, Aldegheri R, Renzi Brivio L. The treatment of fractures with a dynamic axial fixator. J Bone Joint Surg Br. 1984;66:538–545.

    PubMed  Google Scholar 

  13. den Boer FC, Bramer JA, Patka P, Bakker FC, Barentsen RH, Feilzer AJ, de Lange ES, Haarman HJ. Quantification of fracture healing with three-dimensional computed tomography. Arch Orthop Trauma Surg. 1998;117:345–350.

    Article  Google Scholar 

  14. Dodd SP, Cunningham JL, Miles AW, Gheduzzi S, Humphrey VF. Ultrasound transmission loss across transverse and oblique bone fractures: an in vitro study. Ultrasound Med Biol. 2008;34:454–462.

    Article  PubMed  Google Scholar 

  15. Dodd SP, Miles AW, Gheduzzi S, Humphrey VF, Cunningham JL. Modelling the effects of different fracture geometries and healing stages on ultrasound signal loss across a long bone fracture. Comput Methods Biomech Biomed Engin. 2007;10:371–375.

    Article  PubMed  CAS  Google Scholar 

  16. Duda GN, Sporrer S, Sollmann M, Hoffmann JE, Kassi JP, Khodadadyan C, Raschke M. Interfragmentary movements in the early phase of healing in distraction and correction osteotomies stabilized with ring fixators. Langenbecks Arch Surg. 2003;387:433–440.

    PubMed  Google Scholar 

  17. Evans M, Kenwright J, Cunningham JL. Design and performance of a fracture monitoring transducer. J Biomed Eng. 1988;10:64–69.

    Article  PubMed  CAS  Google Scholar 

  18. Gardner TN, Evans M, Kyberd PJ. An instrumented spacial linkage for monitoring relative three-dimensional motion between fracture fragments. J Biomech Eng. 1996;118:586–594.

    Article  PubMed  CAS  Google Scholar 

  19. Gerlanc M, Haddad D, Hyatt GW, Langloh JT, St Hilaire P. Ultrasonic study of normal and fractured bone. Clin Orthop Relat Res. 1975;111:175–180.

    Article  PubMed  Google Scholar 

  20. Glinkowski W, Gorecki A. Clinical experiences with ultrasonometric measurement of fracture healing. Technol Health Care. 2006;14:321–333.

    PubMed  Google Scholar 

  21. Hammer RR, Hammerby S, Lindholm B. Accuracy of radiologic assessment of tibial shaft fracture union in humans. Clin Orthop Relat Res. 1985;199:233–238.

    PubMed  Google Scholar 

  22. Hirasawa Y, Takai S, Kim WC, Takenaka N, Yoshino N, Watanabe Y. Biomechanical monitoring of healing bone based on acoustic emission technology. Clin Orthop Relat Res. 2002;402:236–244.

    Article  PubMed  Google Scholar 

  23. Jernberger A. Measurement of stability of tibial fractures. A mechanical method. Acta Orthop Scand Suppl. 1970;135:1–88.

    PubMed  CAS  Google Scholar 

  24. Jorgensen TE. Measurements of stability of crural fractures treated with Hoffmann osteotaxis 4 The complicated, terminal phase of healing of crural fractures. Acta Orthop Scand. 1972;43:280–291.

    Article  PubMed  CAS  Google Scholar 

  25. Kenwright J, Richardson JB, Cunningham JL, White SH, Goodship AE, Adams MA, Magnussen PA, Newman JH. Axial movement and tibial fractures. A controlled randomised trial of treatment. J Bone Joint Surg Br. 1991;73:654–659.

    PubMed  CAS  Google Scholar 

  26. Kershaw CJ, Cunningham JL, Kenwright J. Tibial external fixation, weight bearing, and fracture movement. Clin Orthop Relat Res. 1993;293:28–36.

    PubMed  Google Scholar 

  27. Krettek C, Haas N, Tscherne H. The role of supplemental lag-screw fixation for open fractures of the tibial shaft treated with external fixation. J Bone Joint Surg Am. 1991;73:893–897.

    PubMed  CAS  Google Scholar 

  28. Malizos KN, Papachristos AA, Protopappas VC, Fotiadis DI. Transosseous application of low-intensity ultrasound for the enhancement and monitoring of fracture healing process in a sheep osteotomy model. Bone. 2006;38:530–539.

    Article  PubMed  Google Scholar 

  29. McClelland D, Thomas PB, Bancroft G, Moorcraft CI. Fracture healing assessment comparing stiffness measurements using radiographs. Clin Orthop Relat Res. 2007;457:214–219.

    PubMed  CAS  Google Scholar 

  30. Nakatsuchi Y, Tsuchikane A, Nomura A. Assessment of fracture healing in the tibia using the impulse response method. J Orthop Trauma. 1996;10:50–62.

    Article  PubMed  CAS  Google Scholar 

  31. Nokes L, Mintowt-Czyz WJ, Fairclough JA, Mackie I, Williams J. Vibration analysis in the assessment of conservatively managed tibial fractures. J Biomed Eng. 1985;7:40–44.

    Article  PubMed  CAS  Google Scholar 

  32. Richardson JB, Cunningham JL, Goodship AE, O’Connor BT, Kenwright J. Measuring stiffness can define healing of tibial fractures. J Bone Joint Surg Br. 1994;76:389–394.

    PubMed  CAS  Google Scholar 

  33. Rohlmann A, Graichen F, Weber U, Bergmann G. 2000 Volvo Award winner in biomechanical studies: Monitoring in vivo implant loads with a telemeterized internal spinal fixation device. Spine. 2000;25:2981–2986.

    Article  PubMed  CAS  Google Scholar 

  34. Sano H, Uhthoff HK, Backman DS, Yeadon A. Correlation of radiographic measurements with biomechanical test results. Clin Orthop Relat Res. 1999;368:271–278.

    Article  PubMed  Google Scholar 

  35. Sarmiento A, McKellop HA, Llinas A, Park SH, Lu B, Stetson W, Rao R. Effect of loading and fracture motions on diaphyseal tibial fractures. J Orthop Res. 1996;14:80–84.

    Article  PubMed  CAS  Google Scholar 

  36. Saulgozis J, Pontaga I, Lowet G, Van der Perre G. The effect of fracture and fracture fixation on ultrasonic velocity and attenuation. Physiol Meas. 1996;17:201–211.

    Article  PubMed  CAS  Google Scholar 

  37. Schneider E, Michel MC, Genge M, Perren SM. Loads acting on an intramedullary femoral nail. In: Bergmann G, Rohlmann A, Graichen F, eds. Implantable Telemetry in Orthopedics. Berlin, Germany: Forschungsmitteilung der FU; 1990:221–227.

    Google Scholar 

  38. Seide K, Weinrich N, Wenzl ME, Wolter D, Jurgens C. Three-dimensional load measurements in an external fixator. J Biomech. 2004;37:1361–1369.

    Article  PubMed  CAS  Google Scholar 

  39. Shah KM, Nicol AC, Hamblen DL. Fracture stiffness measurement in tibial shaft fractures: a non-invasive method. Clin Biomech. 1995;10:395–400.

    Article  Google Scholar 

  40. Steinfield PH, Cobelli NJ, Sadler AH, Szporn MN. Open tibial fractures treated by anterior half-pin frame fixation. Clin Orthop Relat Res. 1988;228:208–214.

    PubMed  Google Scholar 

  41. Thakur AJ, Patankar J. Open tibial fractures. Treatment by uniplanar external fixation and early bone grafting. J Bone Joint Surg Br. 1991;73:448–451.

    PubMed  CAS  Google Scholar 

  42. Tower SS, Beals RK, Duwelius PJ. Resonant frequency analysis of the tibia as a measure of fracture healing. J Orthop Trauma. 1993;7:552–557.

    Article  PubMed  CAS  Google Scholar 

  43. Wade RH, Moorcroft CI, Thomas PB. Fracture stiffness as a guide to the management of tibial fractures. J Bone Joint Surg Br. 2001;83:533–535.

    Article  PubMed  CAS  Google Scholar 

  44. Watanabe Y, Takai S, Arai Y, Yoshino N, Hirasawa Y. Prediction of mechanical properties of healing fractures using acoustic emission. J Orthop Res. 2001;19:548–553.

    Article  PubMed  CAS  Google Scholar 

  45. Webb J, Herling G, Gardner T, Kenwright J, Simpson AH. Manual assessment of fracture stiffness. Injury. 1996;27:319–320.

    Article  PubMed  CAS  Google Scholar 

  46. Windhagen H, Kolbeck S, Bail H, Schmeling A, Raschke M. Quantitative assessment of in vivo bone regeneration consolidation in distraction osteogenesis. J Orthop Res. 2000;18:912–919.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Claes PhD.

Additional information

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

About this article

Cite this article

Claes, L.E., Cunningham, J.L. Monitoring the Mechanical Properties of Healing Bone. Clin Orthop Relat Res 467, 1964–1971 (2009). https://doi.org/10.1007/s11999-009-0752-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-009-0752-7

Keywords

Navigation