Skip to main content

Advertisement

Log in

Role and molecular mechanism of NOD2 in chronic non-communicable diseases

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Nucleotide-binding oligomerization domain containing 2 (NOD2), located in the cell cytoplasm, is a pattern recognition receptor belonging to the innate immune receptor family. It mediates the innate immune response by identifying conserved sequences in bacterial peptide glycans and plays an essential role in maintaining immune system homeostasis. Gene mutations of NOD2 lead to the development of autoimmune diseases such as Crohn’s disease and Blau syndrome. Recently, NOD2 has been shown to be associated with the pathogenesis of diabetes, cardiac-cerebral diseases, and cancers. However, the function of NOD2 in these non-communicable diseases (CNCDs) is not well summarized in reviews. Our report mainly discusses the primary function and molecular mechanism of NOD2 as well as its potential clinical significance in CNCDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Liu HQ, Zhang XY, Edfeldt K, Nijhuis MO, Idborg H, Bäck M, Roy J, Hedin U, Jakobsson PJ, Laman JD et al (2013) NOD2-mediated innate immune signaling regulates the eicosanoids in atherosclerosis. Arterioscler Thromb Vasc Biol 33(9):2193–2201. https://doi.org/10.1161/ATVBAHA.113.301715

    Article  CAS  PubMed  Google Scholar 

  2. Zhang YY, Chen H, Sun C, Wang HZ, Liu ML, Li YY, Nie XL, Du MR, Li DJ, Zhang JP (2014) Expression and functional characterization of NOD2 in decidual stromal cells isolated during the first trimester of pregnancy. PLoS ONE 9(6):e99612. https://doi.org/10.1371/journal.pone.0099612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stafford CA, Gassauer AM, de Oliveira Mann CC, Tanzer MC, Fessler E, Wefers B, Nagl D, Kuut G, Sulek K, Vasilopoulou C et al (2022) Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation. Nature 609(7927):590–596. https://doi.org/10.1038/s41586-022-05125-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Inohara N, Nuñez G (2003) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3(5):371–382. https://doi.org/10.1038/nri1086

    Article  CAS  PubMed  Google Scholar 

  5. Ohto U (2022) Activation and regulation mechanisms of NOD-like receptors based on structural biology. Front Immunol 13:953530. https://doi.org/10.3389/fimmu.2022.953530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhong Z, Ding J, Su G, Liao W, Gao Y, Zhu Y, Deng Y, Li F, Du L, Gao Y et al (2022) Genetic and clinical features of Blau syndrome among Chinese patients with uveitis. Ophthalmology 129(7):821–828. https://doi.org/10.1016/j.ophtha.2022.03.014. Epub 2022 Mar 18

    Article  PubMed  Google Scholar 

  7. Rochereau N, Roblin X, Michaud E, Gayet R, Chanut B, Jospin F, Corthésy B, Paul S (2021) NOD2 deficiency increases retrograde transport of secretory IgA complexes in Crohn’s disease. Nat Commun 12(1):261. https://doi.org/10.1038/s41467-020-20348-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lima MG, Malta DC, Werneck AO, Szwarcwald CL, Souza DBO, Gomes CS, Damacena GN, de Almeida WD, de Azevedo Barros MB (2022) Effect of chronic noncommunicable diseases CNCDs on the sleep of Brazilians during the COVID19 pandemic. Sleep Med 91:205–210. https://doi.org/10.1016/j.sleep.2021.02.052

    Article  PubMed  Google Scholar 

  9. Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, Bharti AC, Aggarwal BB (2018) Chronic diseases, inflammation, and spices: how are they linked? J Transl Med 16(1):14. https://doi.org/10.1186/s12967-018-1381-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C (2010) ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterology 139(5):1630–41. https://doi.org/10.1053/j.gastro.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  11. von Kampen O, Lipinski S, Till A, Martin SJ, Nietfeld W, Lehrach H, Schreiber S, Rosenstiel P (2010) Caspase recruitment domain-containing protein 8 (CARD8) negatively regulates NOD2-mediated signaling. J Biol Chem 285(26):19921–19926. https://doi.org/10.1074/jbc.M110.127480

    Article  CAS  Google Scholar 

  12. Parkhouse R, Boyle JP, Mayle S, Sawmynaden K, Rittinger K, Monie TP (2014) Interaction between NOD2 and CARD9 involves the NOD2 NACHT and the linker region between the NOD2 CARDs and NACHT domain. FEBS Lett 588(17):2830–2836. https://doi.org/10.1016/j.febslet.2014.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Babamale AO, Chen ST (2021) Nod-like receptors: critical intracellular sensors for host protection and cell death in microbial and parasitic infections. Int J Mol Sci 22(21):11398. https://doi.org/10.3390/ijms222111398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lipinski S, Grabe N, Jacobs G, Billmann-Born S, Till A, Häsler R, Aden K, Paulsen M, Arlt A, Kraemer L et al (2012) RNAi screening identifies mediators of NOD2 signaling: implications for spatial specificity of MDP recognition. Proc Natl Acad Sci USA 109(52):21426–21431. https://doi.org/10.1073/pnas.1209673109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hsu LC, Ali SR, McGillivray S, Tseng PH, Mariathasan S, Humke EW, Eckmann L, Powell JJ, Nizet V, Dixit VM et al (2008) A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA 105(22):7803–7808. https://doi.org/10.1073/pnas.0802726105

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wagner RN, Proell M, Kufer TA, Schwarzenbacher R (2009) Evaluation of Nod-like receptor (NLR) effector domain interactions. PLoS ONE 4(4):e4931. https://doi.org/10.1371/journal.pone.0004931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Normand S, Waldschmitt N, Neerincx A, Martinez-Torres RJ, Chauvin C, Couturier-Maillard A, Boulard O, Cobret L, Awad F, Huot L et al (2018) Proteasomal degradation of NOD2 by NLRP12 in monocytes promotes bacterial tolerance and colonization by enteropathogens. Nat Commun 9(1):5338. https://doi.org/10.1038/s41467-018-07750-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maharana J, Maharana D, Bej A, Sahoo BR, Panda D, Wadavrao SB, Vats A, Pradhan SK, De S (2021) Structural Elucidation of Inter-CARD Interfaces involved in NOD2 tandem CARD association and RIP2 recognition. J Phys Chem B 125(49):13349–13365. https://doi.org/10.1021/acs.jpcb.1c06176

    Article  CAS  PubMed  Google Scholar 

  19. Mohanan V, Grimes CL (2014) The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease. J Biol Chem 289(27):18987–18998. https://doi.org/10.1074/jbc.M114.557686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee KH, Biswas A, Liu YJ, Kobayashi KS (2012) Proteasomal degradation of Nod2 protein mediates tolerance to bacterial cell wall components. J Biol Chem 287(47):39800–39811. https://doi.org/10.1074/jbc.M112.410027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Homer CR, Kabi A, Marina-García N et al (2012) A dual role for receptor-interacting protein kinase 2 (RIP2) kinase activity in nucleotide-binding oligomerization domain 2 (NOD2)-dependent autophagy. J Biol Chem 287(30):25565–25576. https://doi.org/10.1074/jbc.M111.326835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang L, Zhang B, Wei M, Xu Z, Kong W, Deng K, Xu X, Zhang L, Ζhao X, Yan L (2020) TRIM22 inhibits endometrial cancer progression through the NOD2/NF-κB signaling pathway and confers a favorable prognosis. Int J Oncol 56(5):1225–1239. https://doi.org/10.3892/ijo.2020.5004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zurek B, Schoultz I, Neerincx A, Napolitano LM, Birkner K, Bennek E, Sellge G, Lerm M, Meroni G, Söderholm JD et al (2012) TRIM27 negatively regulates NOD2 by ubiquitination and proteasomal degradation. PLoS ONE 7(7):e41255. https://doi.org/10.1371/journal.pone.0041255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marinis JM, Homer CR, McDonald C, Abbott DW (2011) A novel motif in the Crohn’s disease susceptibility protein, NOD2, allows TRAF4 to down-regulate innate immune responses. J Biol Chem 286(3):1938–1950. https://doi.org/10.1074/jbc.M110.189308

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Sun M, Liu X, Yan Q, Gao Q, Ni K, Yang J, Zhang S, Zhang C, Shan C (2024) Transcriptome analysis identifies genetic risk markers and explores the pathogenesis for inflammatory bowel disease. Biochim Biophys Acta Mol Basis Dis 1870(3):167013. https://doi.org/10.1016/j.bbadis.2023.167013

    Article  CAS  PubMed  Google Scholar 

  26. Saez A, Herrero-Fernandez B, Gomez-Bris R, Sánchez-Martinez H, Gonzalez-Granado JM (2023) Pathophysiology of inflammatory bowel disease: innate immune system. Int J Mol Sci 24(2):1526. https://doi.org/10.3390/ijms24021526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599–603. https://doi.org/10.1038/35079107

    Article  CAS  PubMed  Google Scholar 

  28. Horowitz JE, Warner N, Staples J, Crowley E, Gosalia N, Murchie R, Van Hout C, Fiedler K, Welch G, King AK et al (2021) Mutation spectrum of NOD2 reveals recessive inheritance as a main driver of early onset Crohn’s disease. Sci Rep 11(1):5595. https://doi.org/10.1038/s41598-021-84938-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hugot JP, Zaccaria I, Cavanaugh J, Yang H, Vermeire S, Lappalainen M, Schreiber S, Annese V, Jewell DP, Fowler EV et al (2007) IBD International Genetics Consortium. Prevalence of CARD15/NOD2 mutations in Caucasian healthy people. Am J Gastroenterol 102(6):1259–67. https://doi.org/10.1111/j.1572-0241.2007.01149.x

    Article  CAS  PubMed  Google Scholar 

  30. Abdelnaby H, Ndiaye NC, D’Amico F, Fouad AM, Hassan S, Elshafey A, Al Hashash W, Faisal M, Alshamali Y, Al-Taweel T et al (2021) NOD2/CARD15 polymorphisms (P268S, IVS8+158, G908R, L1007fs, R702W) among Kuwaiti patients with Crohn’s disease: a case-control study. Saudi J Gastroenterol 27(4):249–256. https://doi.org/10.4103/sjg.sjg_613_20

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rivas MA, Beaudoin M, Gardet A et al (2011) Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet 43(11):1066–1073. Published 2011 Oct 9. https://doi.org/10.1038/ng.952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parkhouse R, Monie TP (2015) Dysfunctional Crohn’s disease-associated NOD2 polymorphisms cannot be reliably predicted on the basis of RIPK2 binding or membrane association. Front Immunol 6:521. https://doi.org/10.3389/fimmu.2015.00521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chamaillard M, Philpott D, Girardin SE, Zouali H, Lesage S, Chareyre F, Bui TH, Giovannini M, Zaehringer U, Penard-Lacronique V et al (2003) Gene-environment interaction modulated by allelic heterogeneity in inflammatory diseases. Proc Natl Acad Sci USA 100(6):3455–3460. https://doi.org/10.1073/pnas.0530276100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaczmarek-Ryś M, Hryhorowicz ST, Lis E, Banasiewicz T, Paszkowski J, Borejsza-Wysocki M, Walkowiak J, Cichy W, Krokowicz P, Czkwianianc E et al (2021) Crohn’s disease susceptibility and onset are strongly related to three NOD2 gene haplotypes. J Clin Med 10(17):3777. https://doi.org/10.3390/jcm10173777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pugazhendhi S, Santhanam S, Venkataraman J, Creveaux I, Ramakrishna BS (2013) NOD2 gene mutations associate weakly with ulcerative colitis but not with Crohn’s disease in Indian patients with inflammatory bowel disease. Gene 512(2):309–313. https://doi.org/10.1016/j.gene.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  36. Kim YG, Shaw MH, Warner N, Park JH, Chen F, Ogura Y, Núñez G (2011) Cutting edge: Crohn’s disease-associated Nod2 mutation limits production of proinflammatory cytokines to protect the host from Enterococcus faecalis-induced lethality. J Immunol 187(6):2849–2852. https://doi.org/10.4049/jimmunol.1001854

    Article  CAS  PubMed  Google Scholar 

  37. van Heel DA, Ghosh S, Butler M, Hunt KA, Lundberg AM, Ahmad T, McGovern DP, Onnie C, Negoro K, Goldthorpe S et al (2005) Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn’s disease. Lancet 365(9473):1794–1796. https://doi.org/10.1016/S0140-6736(05)66582-8

    Article  CAS  PubMed  Google Scholar 

  38. Mirkov MU, Verstockt B, Cleynen I (2017) Genetics of inflammatory bowel disease: beyond NOD2. Lancet Gastroenterol Hepatol 2(3):224–234. https://doi.org/10.1016/S2468-1253(16)30111-X

    Article  PubMed  Google Scholar 

  39. Li YY, Pearson JA, Chao C, Peng J, Zhang X, Zhou Z, Liu Y, Wong FS, Wen L (2017) Nucleotide-binding oligomerization domain-containing protein 2 (Nod2) modulates T1DM susceptibility by gut microbiota. J Autoimmun 82:85–95. https://doi.org/10.1016/j.jaut.2017.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Biswas A, Petnicki-Ocwieja T, Kobayashi KS (2012) Nod2: a key regulator linking microbiota to intestinal mucosal immunity. J Mol Med (Berl) 90(1):15–24. https://doi.org/10.1007/s00109-011-0802-y

    Article  CAS  PubMed  Google Scholar 

  41. Lauro ML, Burch JM, Grimes CL (2016) The effect of NOD2 on the microbiota in Crohn’s disease. Curr Opin Biotechnol 40:97–102. https://doi.org/10.1016/j.copbio.2016.02.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qiu P, Ishimoto T, Fu L, Zhang J, Zhang Z, Liu Y (2022) The gut microbiota in inflammatory bowel disease. Front Cell Infect Microbiol 12:733992. https://doi.org/10.3389/fcimb.2022.733992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL (2008) Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut 57(7):903–910. https://doi.org/10.1136/gut.2007.142588

    Article  CAS  PubMed  Google Scholar 

  44. Sidiq T, Yoshihama S, Downs I, Kobayashi KS (2016) Nod2: A critical regulator of ileal microbiota and Crohn’s disease. Front Immunol 7:367. https://doi.org/10.3389/fimmu.2016.00367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gao J, Zhao X, Hu S, Huang Z, Hu M, Jin S, Lu B, Sun K, Wang Z, Fu J et al (2022) Gut microbial DL-endopeptidase alleviates Crohn’s disease via the NOD2 pathway. Cell Host Microbe 30(10):1435-1449.e9. https://doi.org/10.1016/j.chom.2022.08.002

    Article  CAS  PubMed  Google Scholar 

  46. Zhou L, He X, Wang L et al (2022) Palmitoylation restricts SQSTM1/p62-mediated autophagic degradation of NOD2 to modulate inflammation. Cell Death Differ 29(8):1541–1551. https://doi.org/10.1038/s41418-022-00942-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao D, Liu J, Wang M, Zhang X, Zhou M (2019) Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol 16(4):203–212. https://doi.org/10.1038/s41569-018-0119-4

    Article  PubMed  Google Scholar 

  48. Johansson ME, Zhang XY, Edfeldt K, Lundberg AM, Levin MC, Borén J, Li W, Yuan XM, Folkersen L, Eriksson P et al (2014) Innate immune receptor NOD2 promotes vascular inflammation and formation of lipid-rich necrotic cores in hypercholesterolemic mice. Eur J Immunol 44(10):3081–3092. https://doi.org/10.1002/eji.201444755

    Article  CAS  PubMed  Google Scholar 

  49. Vlacil AK, Schuett J, Ruppert V, Soufi M, Oberoi R, Shahin K, Wächter C, Tschernig T, Lei Y, Liu F et al (2020) Deficiency of nucleotide-binding oligomerization domain-containing proteins (NOD) 1 and 2 reduces atherosclerosis. Basic Res Cardiol 115(4):47. https://doi.org/10.1007/s00395-020-0806-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kwon MY, Hwang N, Back SH, Lee SJ, Perrella MA, Chung SW (2020) Nucleotide-binding oligomerization domain protein 2 deficiency enhances CHOP expression and plaque necrosis in advanced atherosclerotic lesions. FEBS J 287(10):2055–2069. https://doi.org/10.1111/febs.15294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alexander Y, Osto E, Schmidt-Trucksäss A, Shechter M, Trifunovic D, Duncker DJ, Aboyans V, Bäck M, Badimon L, Cosentino F et al (2021) Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc Res 117(1):29–42. https://doi.org/10.1093/cvr/cvaa085

    Article  CAS  PubMed  Google Scholar 

  52. Monteiro JP, Bennett M, Rodor J, Caudrillier A, Ulitsky I, Baker AH (2019) Endothelial function and dysfunction in the cardiovascular system: the long non-coding road. Cardiovasc Res 115(12):1692–1704. https://doi.org/10.1093/cvr/cvz154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Davey MP, Martin TM, Planck SR, Lee J, Zamora D, Rosenbaum JT (2006) Human endothelial cells express NOD2/CARD15 and increase IL-6 secretion in response to muramyl dipeptide. Microvasc Res 71(2):103–107. https://doi.org/10.1016/j.mvr.2005.11.010

    Article  CAS  PubMed  Google Scholar 

  54. Kong LJ, Liu XQ, Xue Y, Gao W, Lv QZ (2018) Muramyl dipeptide induces reactive oxygen species generation through the NOD2/COX-2/NOX4 signaling pathway in human umbilical vein endothelial cells. J Cardiovasc Pharmacol 71(6):352–358. https://doi.org/10.1097/FJC.0000000000000581

    Article  CAS  PubMed  Google Scholar 

  55. Kong LJ, Wang YN, Wang Z, Lv QZ (2021) NOD2 induces VCAM-1 and ET-1 gene expression via NF-κB in human umbilical vein endothelial cells with muramyl dipeptide stimulation. Herz 46(Suppl 2):265–271. English. https://doi.org/10.1007/s00059-020-04996-y

    Article  PubMed  Google Scholar 

  56. Liu Y, Yang H, Liu LX, Yan W, Guo HJ, Li WJ, Tian C, Li HH, Wang HX (2016) NOD2 contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and inflammation. Life Sci 149:10–17. https://doi.org/10.1016/j.lfs.2016.02.039

    Article  CAS  PubMed  Google Scholar 

  57. Zhang H, Zhu T, Liu W, Qu X, Chen Y, Ren P, Wang Z, Wei X, Zhang Y, Yi F (2015) TIPE2 acts as a negative regulator linking NOD2 and inflammatory responses in myocardial ischemia/reperfusion injury. J Mol Med (Berl) 93(9):1033–1043. https://doi.org/10.1007/s00109-015-1288-9

    Article  CAS  PubMed  Google Scholar 

  58. Li X, Li F, Chu Y, Wang X, Zhang H, Hu Y, Zhang Y, Wang Z, Wei X, Jian W et al (2013) NOD2 deficiency protects against cardiac remodeling after myocardial infarction in mice. Cell Physiol Biochem 32(6):1857–1866. https://doi.org/10.1159/000356618

    Article  CAS  PubMed  Google Scholar 

  59. Zong J, Salim M, Zhou H, Bian ZY, Dai J, Yuan Y, Deng W, Zhang JY, Zhang R, Wu QQ et al (2013) NOD2 deletion promotes cardiac hypertrophy and fibrosis induced by pressure overload. Lab Invest 93(10):1128–1136. https://doi.org/10.1038/labinvest.2013.99

    Article  CAS  PubMed  Google Scholar 

  60. Yazdanyar S, Nordestgaard BG (2010) NOD2/CARD15 genotype, cardiovascular disease and cancer in 43,600 individuals from the general population. J Intern Med 268(2):162–170. https://doi.org/10.1111/j.1365-2796.2010.02232.x

    Article  CAS  PubMed  Google Scholar 

  61. Galluzzo S, Patti G, Dicuonzo G, Di Sciascio G, Tonini G, Ferraro E, Spoto C, Campanale R, Zoccoli A, Angeletti S (2011) Association between NOD2/CARD15 polymorphisms and coronary artery disease: a case-control study. Hum Immunol 72(8):636–640. https://doi.org/10.1016/j.humimm.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  62. Kharwar NK, Prasad KN, Paliwal VK, Modi DR (2016) Association of NOD1 and NOD2 polymorphisms with Guillain-Barré syndrome in Northern Indian population. J Neurol Sci 363:57–62. https://doi.org/10.1016/j.jns.2016.02.028

    Article  CAS  PubMed  Google Scholar 

  63. Santa-Cecília FV, Ferreira DW, Guimaraes RM, Cecilio NT, Fonseca MM, Lopes AH, Davoli-Ferreira M, Kusuda R, Souza GR, Nachbur U et al (2019) The NOD2 signaling in peripheral macrophages contributes to neuropathic pain development. Pain 160(1):102–116. https://doi.org/10.1097/j.pain.0000000000001383

    Article  CAS  PubMed  Google Scholar 

  64. Li H, Hu J, Ma L, Yuan Z, Wang Y, Wang X, Xing D, Lei F, Du L (2010) Comprehensive study of baicalin down-regulating NOD2 receptor expression of neurons with oxygen-glucose deprivation in vitro and cerebral ischemia-reperfusion in vivo. Eur J Pharmacol 649(1–3):92–99. https://doi.org/10.1016/j.ejphar.2010.09.023

    Article  CAS  PubMed  Google Scholar 

  65. Chen L, Kong L, Wei X, Wang Y, Wang B, Zhang X, Sun J, Liu H (2019) β-arrestin 2 negatively regulates NOD2 signalling pathway through association with TRAF6 in microglia after cerebral ischaemia/reperfusion injury. J Cell Mol Med 23(5):3325–3335. https://doi.org/10.1111/jcmm.14223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu H, Wei X, Kong L, Liu X, Cheng L, Yan S, Zhang X, Chen L (2015) NOD2 is involved in the inflammatory response after cerebral ischemia-reperfusion injury and triggers NADPH oxidase 2-derived reactive oxygen species. Int J Biol Sci 11(5):525–535. https://doi.org/10.7150/ijbs.10927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ma Q, An X, Li Z, Zhang H, Huang W, Cai L, Hu P, Lin Q, Tzeng CM (2013) P268S in NOD2 associates with susceptibility to Parkinson’s disease in Chinese population. Behav Brain Funct 9:19. https://doi.org/10.1186/1744-9081-9-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Appenzeller S, Thier S, Papengut F, Klein C, Hagenah J, Kasten M, Berg D, Srulijes K, Gasser T, Schreiber S et al (2012) No association between NOD2 variants and Parkinson’s disease. Mov Disord 27(9):1191–1192. https://doi.org/10.1002/mds.25059

    Article  PubMed  Google Scholar 

  69. Cheng L, Chen L, Wei X, Wang Y, Ren Z, Zeng S, Zhang X, Wen H, Gao C, Liu H (2018) NOD2 promotes dopaminergic degeneration regulated by NADPH oxidase 2 in 6-hydroxydopamine model of Parkinson’s disease. J Neuroinflammation 15(1):243. https://doi.org/10.1186/s12974-018-1289-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Basso V, Marchesan E, Peggion C, Chakraborty J, von Stockum S, Giacomello M, Ottolini D, Debattisti V, Caicci F, Tasca E et al (2018) Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol Res 138:43–56. https://doi.org/10.1016/j.phrs.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  71. Singh K, Han K, Tilve S, Wu K, Geller HM, Sack MN (2018) Parkin targets NOD2 to regulate astrocyte endoplasmic reticulum stress and inflammation. Glia 66(11):2427–2437. https://doi.org/10.1002/glia.23482

    Article  PubMed  PubMed Central  Google Scholar 

  72. Piec PA, Pons V, Préfontaine P, Rivest S (2022) Muramyl dipeptide administration delays Alzheimer’s disease physiopathology via NOD2 receptors. Cells 11(14):2241. https://doi.org/10.3390/cells11142241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Piec PA, Pons V, Rivest S (2021) Triggering innate immune receptors as new therapies in Alzheimer’s Disease and multiple sclerosis. Cells 10(8):2164. https://doi.org/10.3390/cells10082164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gao J, Wang L, Jiang J, Xu Q, Zeng N, Lu B, Yuan P, Sun K, Zhou H, He X (2023) A probiotic bi-functional peptidoglycan hydrolase sheds NOD2 ligands to regulate gut homeostasis in female mice. Nat Commun 14(1):3338. https://doi.org/10.1038/s41467-023-38950-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cuda C, Badawi A, Karmali M, El-Sohemy A (2012) Effects of polymorphisms in nucleotide-binding oligomerization domains 1 and 2 on biomarkers of the metabolic syndrome and type II diabetes. Genes Nutr 7(3):427–435. https://doi.org/10.1007/s12263-012-0287-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ozbayer C, Kurt H, Kebapci MN, Gunes HV, Colak E, Degirmenci I (2017) Effects of genetic variations in the genes encoding NOD1 and NOD2 on type 2 diabetes mellitus and insulin resistance. J Clin Pharm Ther 42(1):98–102. https://doi.org/10.1111/jcpt.12482

    Article  CAS  PubMed  Google Scholar 

  77. Du P, Fan B, Han H, Zhen J, Shang J, Wang X, Li X, Shi W, Tang W, Bao C et al (2013) NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy. Kidney Int 84(2):265–276. https://doi.org/10.1038/ki.2013.113

    Article  CAS  PubMed  Google Scholar 

  78. Zangara MT, Johnston I, Johnson EE, McDonald C (2021) Mediators of metabolism: an unconventional role for NOD1 and NOD2. Int J Mol Sci 22(3):1156. https://doi.org/10.3390/ijms22031156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shiny A, Regin B, Balachandar V et al (2013) Convergence of innate immunity and insulin resistance as evidenced by increased nucleotide oligomerization domain (NOD) expression and signaling in monocytes from patients with type 2 diabetes. Cytokine 64(2):564–570. https://doi.org/10.1016/j.cyto.2013.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, Blacher E, Braverman S, Tengeler AC, Barak O, Elazar M et al (2018) Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359(6382):1376–1383. https://doi.org/10.1126/science.aar3318

    Article  CAS  PubMed  Google Scholar 

  81. Denou E, Lolmède K, Garidou L, Pomie C, Chabo C, Lau TC, Fullerton MD, Nigro G, Zakaroff-Girard A, Luche E et al (2015) Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance. EMBO Mol Med 7(3):259–74. https://doi.org/10.15252/emmm.201404169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shen L, Li L, Li M, Wang W, Yin W, Liu W, Hu Y (2018) Silencing of NOD2 protects against diabetic cardiomyopathy in a murine diabetes model. Int J Mol Med 42(6):3017–3026. https://doi.org/10.3892/ijmm.2018.3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shang J, Zhang Y, Jiang Y, Li Z, Duan Y, Wang L, Xiao J, Zhao Z (2017) NOD2 promotes endothelial-to-mesenchymal transition of glomerular endothelial cells via MEK/ERK signaling pathway in diabetic nephropathy. Biochem Biophys Res Commun 484(2):435–441. https://doi.org/10.1016/j.bbrc.2017.01.155

    Article  CAS  PubMed  Google Scholar 

  84. Carlos D, Pérez MM, Leite JA, Rocha FA, Martins LMS, Pereira CA, Fraga-Silva TFC, Pucci TA, Ramos SG, Câmara NOS et al (2020) NOD2 deficiency promotes intestinal CD4+ T Lymphocyte imbalance, metainflammation, and aggravates type 2 diabetes in murine model. Front Immunol 11:1265. https://doi.org/10.3389/fimmu.2020.01265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sharma DC (2006) WHO groups cancer together with chronic diseases. Lancet Oncol 7(3):200. https://doi.org/10.1016/s1470-2045(06)70600-3

    Article  PubMed  Google Scholar 

  86. Kutikhin AG (2011) Role of NOD1/CARD4 and NOD2/CARD15 gene polymorphisms in cancer etiology. Hum Immunol 72(10):955–968. https://doi.org/10.1016/j.humimm.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  87. Liu J, He C, Xu Q, Xing C, Yuan Y (2014) NOD2 polymorphisms associated with cancer risk: a meta-analysis. PLoS One 9(2):e89340. https://doi.org/10.1371/journal.pone.0089340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang P, Zhang L, Jiang JM, Ma D, Tao HX, Yuan SL, Wang YC, Wang LC, Liang H, Zhang ZS et al (2012) Association of NOD1 and NOD2 genes polymorphisms with Helicobacter pylori related gastric cancer in a Chinese population. World J Gastroenterol 18(17):2112–2120. https://doi.org/10.3748/wjg.v18.i17.2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang Y, Miao Z, Qin X, Li B, Han Y (2021) NOD2 deficiency confers a pro-tumorigenic macrophage phenotype to promote lung adenocarcinoma progression. J Cell Mol Med 25(15):7545–7558. https://doi.org/10.1111/jcmm.16790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Udden SMN, Peng L, Gan JL, Shelton JM, Malter JS, Hooper LV, Zaki MH (2017) NOD2 suppresses colorectal tumorigenesis via downregulation of the TLR pathways. Cell Rep 19(13):2756–2770. https://doi.org/10.1016/j.celrep.2017.05.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, Huot L, Grandjean T, Bressenot A, Delanoye-Crespin A et al (2013) NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest 123(2):700–711. https://doi.org/10.1172/JCI62236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ma X, Qiu Y, Sun Y, Zhu L, Zhao Y, Li T, Lin Y, Ma D, Qin Z, Sun C et al (2020) NOD2 inhibits tumorigenesis and increases chemosensitivity of hepatocellular carcinoma by targeting AMPK pathway. Cell Death Dis 11(3):174. https://doi.org/10.1038/s41419-020-2368-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhou Y, Hu L, Tang W, Li D, Ma L, Liu H, Zhang S, Zhang X, Dong L, Shen X et al (2021) Hepatic NOD2 promotes hepatocarcinogenesis via a RIP2-mediated proinflammatory response and a novel nuclear autophagy-mediated DNA damage mechanism. J Hematol Oncol 14(1):9. https://doi.org/10.1186/s13045-020-01028-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang Y, Li N, Yuan G, Yao H, Zhang D, Li N, Zhang G, Sun Y, Wang W, Zeng J et al (2022) Upregulation of NOD1 and NOD2 contribute to cancer progression through the positive regulation of tumorigenicity and metastasis in human squamous cervical cancer. BMC Med 20(1):55. https://doi.org/10.1186/s12916-022-02248-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Velloso FJ, Campos AR, Sogayar MC, Correa RG (2019) Proteome profiling of triple negative breast cancer cells overexpressing NOD1 and NOD2 receptors unveils molecular signatures of malignant cell proliferation. BMC Genomics 20(1):152. Published 2019 Feb 21. https://doi.org/10.1186/s12864-019-5523-6

    Article  PubMed  PubMed Central  Google Scholar 

  96. Dong Y, Wang S, Wang C, Li Z, Ma Y, Liu G (2017) Antagonizing NOD2 signaling with conjugates of paclitaxel and muramyl dipeptide derivatives sensitizes paclitaxel therapy and significantly prevents tumor metastasis. J Med Chem 60(3):1219–1224. https://doi.org/10.1021/acs.jmedchem.6b01704

    Article  CAS  PubMed  Google Scholar 

  97. Peña-Oyarzun D, Bravo-Sagua R, Diaz-Vega A, Aleman L, Chiong M, Garcia L, Bambs C, Troncoso R, Cifuentes M, Morselli E et al (2018) Autophagy and oxidative stress in non-communicable diseases: a matter of the inflammatory state? Free Radic Biol Med 124:61–78. https://doi.org/10.1016/j.freeradbiomed.2018.05.084

    Article  CAS  PubMed  Google Scholar 

  98. Wu F, Narimatsu H, Li X, Nakamura S, Sho R, Zhao G, Nakata Y, Xu W (2017) Non-communicable diseases control in China and Japan. Global Health 13(1):91. https://doi.org/10.1186/s12992-017-0315-8

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kobayashi K, Inohara N, Hernandez LD, Galán JE, Núñez G, Janeway CA, Medzhitov R, Flavell RA (2002) RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416(6877):194–199. https://doi.org/10.1038/416194a

    Article  CAS  PubMed  Google Scholar 

  100. Ren Y, Liu SF, Nie L, Cai SY, Chen J (2019) Involvement of ayu NOD2 in NF-κB and MAPK signaling pathways: insights into functional conservation of NOD2 in antibacterial innate immunity. Zool Res 40(2):77–88. https://doi.org/10.24272/j.issn.2095-8137.2018.066

    Article  CAS  PubMed  Google Scholar 

  101. Fritz T, Niederreiter L, Adolph T, Blumberg RS, Kaser A (2011) Crohn’s disease: NOD2, autophagy and ER stress converge. Gut 60(11):1580–1588. https://doi.org/10.1136/gut.2009.206466

    Article  CAS  PubMed  Google Scholar 

  102. Jonsson AL, Bäckhed F (2017) Role of gut microbiota in atherosclerosis. Nat Rev Cardiol 14(2):79–87. https://doi.org/10.1038/nrcardio.2016.183

    Article  CAS  PubMed  Google Scholar 

  103. Al Nabhani Z, Dietrich G, Hugot JP, Barreau F (2017) Nod2: the intestinal gate keeper. PLoS Pathog 13(3):e1006177. https://doi.org/10.1371/journal.ppat.1006177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Naderi S, Merchant AT (2020) The association between periodontitis and cardiovascular disease: an update. Curr Atheroscler Rep 22(10):52. https://doi.org/10.1007/s11883-020-00878-0

    Article  PubMed  Google Scholar 

  105. Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, Duong CPM, Flament C, Lepage P, Roberti MP et al (2016) Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45(4):931–943. https://doi.org/10.1016/j.immuni.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  106. Zhong H, Waresi M, Zhang W, Han L, Zhao Y, Chen Y, Zhou P, Chang L, Pan G, Wu B et al (2021) NOD2-mediated P2Y12 upregulation increases platelet activation and thrombosis in sepsis. Biochem Pharmacol 194:114822. https://doi.org/10.1016/j.bcp.2021.114822

    Article  CAS  PubMed  Google Scholar 

  107. Iwamura C, Ohnuki H, Flomerfelt FA, Zheng L, Carletti A, Wakashin H, Mikami Y, Brooks SR, Kanno Y, Gress RE et al (2023) Microbial ligand-independent regulation of lymphopoiesis by NOD1. Nat Immunol 24(12):2080–2090. https://doi.org/10.1038/s41590-023-01668-x

    Article  CAS  PubMed  Google Scholar 

  108. Caruso R, Warner N, Inohara N, Núñez G (2014) NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41(6):898–908. https://doi.org/10.1016/j.immuni.2014.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Juárez E, Carranza C, Hernández-Sánchez F, Loyola E, Escobedo D, León-Contreras JC, Hernández-Pando R, Torres M, Sada E (2014) Nucleotide-oligomerizing domain-1 (NOD1) receptor activation induces pro-inflammatory responses and autophagy in human alveolar macrophages. BMC Pulm Med 14:152. https://doi.org/10.1186/1471-2466-14-152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Natividad JM, Petit V, Huang X, de Palma G, Jury J, Sanz Y, Philpott D, Garcia Rodenas CL, McCoy KD, Verdu EF (2012) Commensal and probiotic bacteria influence intestinal barrier function and susceptibility to colitis in NOD1-/-; NOD2-/- mice. Inflamm Bowel Dis 18(8):1434–1446. https://doi.org/10.1002/ibd.22848

    Article  PubMed  Google Scholar 

  111. Delgado C, Ruiz-Hurtado G, Gómez-Hurtado N, González-Ramos S, Rueda A, Benito G, Prieto P, Zaragoza C, Delicado EG, Pérez-Sen R, Miras-Portugal MT, Núñez G, Boscá L, Fernández-Velasco M (2015) NOD1, a new player in cardiac function and calcium handling. Cardiovasc Res 106(3):375–386. https://doi.org/10.1093/cvr/cvv118

    Article  CAS  PubMed  Google Scholar 

  112. Chan KL, Tam TH, Boroumand P, Prescott D, Costford SR, Escalante NK, Fine N, Tu Y, Robertson SJ, Prabaharan D et al (2017) Circulating NOD1 activators and hematopoietic NOD1 contribute to metabolic inflammation and Insulin resistance. Cell Rep 18(10):2415–2426. https://doi.org/10.1016/j.celrep.2017.02.027

    Article  CAS  PubMed  Google Scholar 

  113. Sharma A, Singh S, Mishra A, Rai AK, Ahmad I, Ahmad S, Gulzar F, Schertzer JD, Shrivastava A, Tamrakar AK (2022) Insulin resistance corresponds with a progressive increase in NOD1 in high fat diet-fed mice. Endocrine 76(2):282–293. https://doi.org/10.1007/s12020-022-02995-z

    Article  CAS  PubMed  Google Scholar 

  114. Jiang HY, Najmeh S, Martel G, MacFadden-Murphy E, Farias R, Savage P, Leone A, Roussel L, Cools-Lartigue J, Gowing S et al (2020) Activation of the pattern recognition receptor NOD1 augments colon cancer metastasis. Protein Cell 11(3):187–201. https://doi.org/10.1007/s13238-019-00687-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Maisonneuve C, Tsang DKL, Foerster EG, Robert LM, Mukherjee T, Prescott D, Tattoli I, Lemire P, Winer DA, Winer S et al (2021) Nod1 promotes colorectal carcinogenesis by regulating the immunosuppressive functions of tumor-infiltrating myeloid cells. Cell Rep 34(4):108677. https://doi.org/10.1016/j.celrep.2020.108677

    Article  CAS  PubMed  Google Scholar 

  116. Moreno L, Gatheral T (2013) Therapeutic targeting of NOD1 receptors. Br J Pharmacol 170(3):475–485. https://doi.org/10.1111/bph.12300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ma X, Qiu Y, Zhu L, Zhao Y, Lin Y, Ma D, Qin Z, Sun C, Shen X, Li T et al (2020) NOD1 inhibits proliferation and enhances response to chemotherapy via suppressing SRC-MAPK pathway in hepatocellular carcinoma. J Mol Med (Berl) 98(2):221–232. https://doi.org/10.1007/s00109-019-01868-9

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of Shandong Province (ZR2021QH158).

Author information

Authors and Affiliations

Authors

Contributions

Dr. Lingjun Kong designed and performed the review article. Analysis from a clinical perspective was under the guidance of Professor Yahui Zhang. Ms. Yanhua Cao and Yanan He participated in part of the discussion and reviewed the manuscript. All co-authors approve the final version of the manuscript.

Corresponding author

Correspondence to Yahui Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Cao, Y., He, Y. et al. Role and molecular mechanism of NOD2 in chronic non-communicable diseases. J Mol Med 102, 787–799 (2024). https://doi.org/10.1007/s00109-024-02451-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-024-02451-7

Keywords

Navigation