Skip to main content

Advertisement

Log in

Insulin resistance corresponds with a progressive increase in NOD1 in high fat diet-fed mice

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Innate immune components participate in obesity-induced inflammation, which can contribute to endocrine dysfunction during metabolic diseases. However, the chronological activation of specific immune proteins such as Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and relevance to cellular crosstalk during the progression of obesity-associated insulin resistance (IR) is not known.

Methods

The NOD1 signaling in various insulin-sensitive metabolic tissues during the progression of diet-insulin resistance was assessed in C57BL/6J mice fed with 60% high-fat diet (HFD) for 4, 8, 12, and 16 weeks. Intestinal permeability was measured using FITC-dextran. NOD1 activating potential was analyzed using HEK-Blue mNOD1 cells.

Results

HFD-fed mice showed progressive induction of glucose intolerance and impairment of insulin signaling in key metabolic tissues. We found a time-dependent increase in intestinal permeability coupled with transport and accumulation of NOD1 activating ligand in the serum of HFD-fed mice. We also observed a progressive accumulation of γ-D-glutamyl-meso-diaminopimelic acid (DAP), a microbial peptidoglycan ligand known to activate NOD1, in serum samples of the HFD-fed mice. There was also a progressive increase in transcripts levels of NOD1 in bone marrow-derived macrophages during HFD-feeding. In addition, skeletal muscle, adipose and liver, the key insulin sensitive metabolic tissues also had a time-dependent increase in transcripts of NOD1 and Rip2 and a corresponding activation of pro-inflammatory responses in these tissues.

Conclusion

These data highlight the correlation of inflammation and insulin resistance to NOD1 activation in the bone marrow derived macrophages and insulin responsive metabolic tissues during high fat diet feeding in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Data supporting the reported results will be available with the corresponding author (AK Tamrakar).

References

  1. F.B. Hu, A. Satija, J.E. Manson, Curbing the diabetes pandemic: the need for global policy solutions. JAMA 313, 2319–2320 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J.M. Olefsky, C.K. Glass, Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. S. Schenk, M. Saberi, J.M. Olefsky, Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest. 118, 2992–3002 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. R. Medzhitov, Inflammation 2010: new adventures of an old flame. Cell 140, 771–776 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. G.S. Hotamisligil, Inflammation and metabolic disorders. Nature 444, 860–867 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. N. Fei, L. Zhao, An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 7, 880–884 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. P.D. Cani, R. Bibiloni, C. Knauf, A. Waget, A.M. Neyrinck, N.M. Delzenne et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. Y.Y. Lam, C.W.Y. Ha, C.R. Campbell, A.J. Mitchell, A. Dinudom, J. Oscarsson et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS ONE 7, e34233 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. P.D. Cani, J. Amar, M.A. Iglesias, M. Poggi, C. Knauf, D. Bastelica et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. J. Amar, R. Burcelin, J.B. Ruidavets, P.D. Cani, J. Fauvel, M.C. Alessi, Energy intake is associated with endotoxemia in apparently healthy men. Am. J. Clin. Nutr. 87, 1219–1223 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. S. Pendyala, J.M. Walker, P.R. Holt, A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142, 1100–1101.e2 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. J.B. Grigg, G.F. Sonnenberg, Host-microbiota interactions shape local and systemic inflammatory diseases. J. Immunol. 198, 564–571 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. F.F. Anhe, B.A.H. Jensen, T.V. Varin, F. Servant, S.V. Blerk, D. Richard et al. Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat. Metab. 2, 233–242 (2020)

    Article  PubMed  Google Scholar 

  14. J.K. Nicholson, E. Holmes, J. Kinross, R. Burcelin, G. Gibson, W. Jia et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. W.J. Lee, K. Hase, Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10, 416–424 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. K.L. Alexander, S.R. Targan, C.O. Elson, 3rd Microbiota activation and regulation of innate and adaptive immunity. Immunol. Rev. 260, 206–220 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. W. Chi, D. Dao, T.C. Lau, B.D. Henriksbo, J.F. Cavallari, K.P. Foley et al. Bacterial peptidoglycan stimulates adipocyte lipolysis via NOD1. PLoS ONE 9, e97675 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. H. Shi, M.V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, J.S. Flier, TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. T.B. Clarke, K.M. Davis, E.S. Lysenko, A.Y. Zhou, Y. Yu, J.N. Weiser, Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16, 228–231 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J.D. Schertzer, A.K. Tamrakar, J.G. Magalhães, S. Pereira, P.J. Bilan, M.D. Fullerton et al. NOD1 activators link innate immunity to insulin resistance. Diabetes 60, 2206–2215 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J.F. Cavallari, M.D. Fullerton, B.M. Duggan, K.P. Foley, E. Denou, B.K. Smith et al. Muramyl dipeptide-based postbiotics mitigate obesity-induced insulin resistance via IRF4. Cell Metab. 25, 1063–1074 e1063 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. M. Hedl, J. Li, J.H. Cho, C. Abraham, Chronic stimulation of Nod2 mediates tolerance to bacterial products. Proc. Natl Acad. Sci. USA 104, 19440–19445 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. E. Denou, K. Lolmède, L. Garidou, C. Pomie, C. Chabo, T.C. Lau et al. Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance. EMBO Mol. Med. 7, 259–274 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J.F. Cavallari, N.T. Pokrajac, S. Zlitni, K.P. Foley, B.D. Henriksbo, J.D. Schertzer, NOD2 in hepatocytes engages a liver-gut axis to protect against steatosis, fibrosis, and gut dysbiosis during fatty liver disease in mice. Am. J. Physiol. Endocrinol. Metab. 319, E305–E314 (2020)

    Article  CAS  PubMed  Google Scholar 

  25. Z. Huang, J. Wang, X. Xu, H. Wang, Y. Qiao, W.C. Chu et al. Antibody neutralization of microbiota-derived circulating peptidoglycan dampens inflammation and ameliorates autoimmunity. Nat. Microbiol. 4, 766–773 (2019)

    Article  CAS  PubMed  Google Scholar 

  26. J. Amar, C. Chabo, A. Waget, P. Klopp, C. Vachoux, L.G. Bermúdez-Humarán et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med. 3, 559–572 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. K.L. Chan, T.H. Tam, P. Boroumand, D. Prescott, S.R. Costford, N.K. Escalante et al. Circulating NOD1 activators and hematopoietic NOD1 contribute to metabolic inflammation and insulin resistance. Cell Rep. 18, 2415–2426 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. T. Masek, V. Vopalensky, P. Suchomelova, M. Pospisek, Denaturing RNA electrophoresis in TAE agarose gels. Anal. Biochem. 336, 46–50 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. H. Luck, S. Tsai, J. Chung, X. Clemente-Casares, M. Ghazarian, X.S. Revelo et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 21, 527–542 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. S.E. Shoelson, J. Lee, A.B. Goldfine, Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J.Y. Kim, E. Omori, K. Matsumoto, G. Nunez, J. Ninomiya-Tsuji, TAK1 is a central mediator of NOD2 signaling in epidermal cells. J. Biol. Chem. 283, 137–144 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. T. Stroh, A. Batra, R. Glauben, I. Fedke, U. Erben, A. Kroesen, Nucleotide oligomerization domain 1 and 2: regulation of expression and function in preadipocytes. J. Immunol. 181, 3620–3627 (2008)

    Article  CAS  PubMed  Google Scholar 

  33. A.K. Tamrakar, J.D. Shertzer, T.T. Chiu, K.P. Foley, P.J. Bilan, D.J. Philpott et al. NOD2 activation induces muscle cell-autonomous innate immune responses and insulin resistance. Endocrinology 151, 5624–5637 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. C.K. Maurya, D. Arha, A.K. Rai, S.K. Kumar, J. Pandey, D.R. Avisetti, NOD2 activation induces oxidative stress contributing to mitochondrial dysfunction and insulin resistance in skeletal muscle cells. Free Radic. Biol. Med. 89, 158–169 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. A. Sharma, C.K. Maurya, D. Arha, A.K. Rai, S. Singh, S. Varshney et al. Nod1-mediated lipolysis promotes diacylglycerol accumulation and successive inflammation via PKCδ-IRAK axis in adipocytes. Biochim. Biophys. Acta Mol. Basis Dis. 136–146, 2019 (1865)

    Google Scholar 

  36. S.E. Girardin, I.G. Boneca, L.A. Carneiro, A. Antignac, M. Jéhanno, J. Viala et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003)

    Article  CAS  PubMed  Google Scholar 

  37. M. Chamaillard, M. Hashimoto, Y. Horie, J. Masumoto, S. Qiu, L. Saab et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4, 702–707 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. J.B. McPhee, J.D. Schertzer, Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clin. Sci. (Lond.) 129, 1083–1096 (2015)

    Article  CAS  Google Scholar 

  39. P.J. Turnbaugh, F. Bäckhed, L. Fulton, J.I. Gordon, Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. B.O. Schroeder, F. Bäckhed, Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089 (2016)

    Article  CAS  PubMed  Google Scholar 

  41. K.A. Cloud-Hansen, S.B. Peterson, E.V. Stabb, W.E. Goldman, M.J. McFall-Ngai, J. Handelsman, Breaching the great wall: peptidoglycan and microbial interactions. Nat. Rev. Microbiol. 4, 710–716 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. J.W. Johnson, J.F. Fisher, S. Mobashery, Bacterial cell-wall recycling. Ann. N. Y. Acad. Sci. 1277, 54–75 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. Z. Huang, J. Wang, X. Xu, H. Wang, Y. Qiao, W.C. Chu, S. Xu et al. Antibody neutralization of microbiota-derived circulating peptidoglycan dampens inflammation and ameliorates autoimmunity. Nat. Microbiol. 4, 766–773 (2019)

    Article  CAS  PubMed  Google Scholar 

  44. A.J. Wolf, D.M. Underhill, Peptidoglycan recognition by the innate immune system. Nat. Rev. Immunol. 18, 243–254 (2018)

    Article  CAS  PubMed  Google Scholar 

  45. M.J. Lappas, NOD1 expression is increased in the adipose tissue of women with gestational diabetes. Endocrinol 222, 99–112 (2014)

    Article  CAS  Google Scholar 

  46. Y.J. Zhou, C. Liu, C.L. Li, Y.L. Song, Y.S. Tang, H. Zhou et al. Increased NOD1, but not NOD2, activity in subcutaneous adipose tissue from patients with metabolic syndrome. Obes. (Silver Spring) 23, 1394–400 (2015)

    Article  CAS  Google Scholar 

  47. R.A. DeFronzo, D. Tripathy, Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32, S157–S163 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. C.M. Taniguchi, B. Emanuelli, R.C. Kahn, Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 (2006)

    Article  CAS  PubMed  Google Scholar 

  49. R. Medzhitov, Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007)

    Article  CAS  PubMed  Google Scholar 

  50. L. Zhao, M. Kwon, S. Huang, J.Y. Lee, K. Fukase, N. Inohara et al. Differential modulation of Nods signaling pathways by fatty acids in human colonic epithelial HCT116 cells. J. Biol. Chem. 282, 11618–11628 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grant from the Department of Biotechnology, New Delhi, India [No. BT/PR15667/BRB/10/1465/2015]. AS, SS, SA and FG are supported by Research Fellowship from the Council of Scientific and Industrial Research (CSIR) New Delhi. JDS holds a grant from the Canadian Institutes of Health Research (CIHR; FDN -154295) and a Canada Research Chair in Metabolic Inflammation.

Author information

Authors and Affiliations

Authors

Contributions

AS, SS, AM, and AKR conducted the experiments, analyzed the data and drafted the manuscript. IA, SA and FG contributed to acquisition and analysis of data. JDS and AS interpreted the data and reviewed and edited the manuscript. AKT contributed to the design and analysis of the study, interpreted the data, wrote and reviewed the manuscript. All listed authors approved the final version of the manuscript. This manuscript bears the CDRI communication No. 10351.

Corresponding author

Correspondence to Akhilesh K. Tamrakar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Animal study reported in the manuscript was approved by Institutional Animal Ethics Committee (IAEC) of the CSIR-Central Drug Research Institute, Lucknow.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Singh, S., Mishra, A. et al. Insulin resistance corresponds with a progressive increase in NOD1 in high fat diet-fed mice. Endocrine 76, 282–293 (2022). https://doi.org/10.1007/s12020-022-02995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-02995-z

Keywords

Navigation