Skip to main content
Log in

Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Bone marrow (BM) is a heterogeneous niche where bone marrow stromal cells (BMSCs), osteoblasts, osteoclasts, adipocytes, hematopoietic cells, and immune cells coexist. The cellular composition of BM changes with various pathophysiological states. A reduction in osteoblast number and a concomitant increase in adipocyte number in aging and pathological conditions put bone marrow adipose tissue (BMAT) into spotlight. Accumulating evidence strongly supports that an overwhelming production of BMAT is a major contributor to bone loss disorders. Therefore, BMAT-targeted therapy can be an efficient and feasible intervention for osteoporosis. However, compared to blocking bone-destroying molecules produced by BMAT, suppressing BMAT formation is theoretically a more effective and fundamental approach in treating osteoporotic bone diseases. Thus, a deep insight into the molecular basis underlying increased BM adiposity during pathologic bone loss is critical to formulate strategies for therapeutically manipulating BMAT. In this review, we comprehensively summarize the molecular mechanisms involved in adipocyte differentiation of BMSCs as well as the interaction between bone marrow adipocytes and osteoclasts. More importantly, we further discuss the potential clinical implications of therapeutically targeting the upstream of BMAT formation in bone loss diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li J, Chen X, Lu L, Yu X (2020) The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev 52:88–98. https://doi.org/10.1016/j.cytogfr.2020.02.003

    Article  CAS  PubMed  Google Scholar 

  2. Langdahl B (2020) Treatment of postmenopausal osteoporosis with bone-forming and antiresorptive treatments: combined and sequential approaches. Bone 139:115516. https://doi.org/10.1016/j.bone.2020.115516

    Article  CAS  PubMed  Google Scholar 

  3. Cheng C, Wentworth K, Shoback DM (2019) New frontiers in osteoporosis therapy. Annu Rev Med 71:277–288. https://doi.org/10.1146/annurev-med-052218-020620

    Article  CAS  PubMed  Google Scholar 

  4. Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, Woelk L, Fan H, Logan DW, Schurmann A et al (2017) Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20(6):771–784. https://doi.org/10.1016/j.stem.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tencerova M, Figeac F, Ditzel N, Taipaleenmaki H, Nielsen TK, Kassem M (2018) High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J Bone Miner Res 33(6):1154–1165. https://doi.org/10.1002/jbmr.3408

    Article  CAS  PubMed  Google Scholar 

  6. Botolin S, McCabe LR (2007) Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology 148(1):198–205. https://doi.org/10.1210/en.2006-1006

    Article  CAS  PubMed  Google Scholar 

  7. Veldhuis-Vlug AG, Rosen CJ (2018) Clinical implications of bone marrow adiposity. J Intern Med 283(2):121–139. https://doi.org/10.1111/joim.12718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3(6):379–389. https://doi.org/10.1111/j.1474-9728.2004.00127.x

    Article  CAS  PubMed  Google Scholar 

  9. Liu Q, Zhang X, Jiao Y, Liu X, Wang Y, Li SL, Zhang W, Chen FM, Ding Y, Jiang C et al (2018) In vitro cell behaviors of bone mesenchymal stem cells derived from normal and postmenopausal osteoporotic rats. Int J Mol Med 41(2):669–678. https://doi.org/10.3892/ijmm.2017.3280

    Article  CAS  PubMed  Google Scholar 

  10. Fan Y, Hanai JI, Le PT, Bi R, Maridas D, DeMambro V, Figueroa CA, Kir S, Zhou X, Mannstadt M et al (2017) Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab 25(3):661–672. https://doi.org/10.1016/j.cmet.2017.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma S, Mahajan A, Mittal A, Gohil R, Sachdeva S, Khan S, Dhillon M (2020) Epigenetic and transcriptional regulation of osteoclastogenesis in the pathogenesis of skeletal diseases: a systematic review. Bone 138:115507. https://doi.org/10.1016/j.bone.2020.115507

    Article  CAS  PubMed  Google Scholar 

  12. Lee JE, Schmidt H, Lai B, Ge K (2019) Transcriptional and epigenomic regulation of adipogenesis. Mol Cell Biol 39(11):e00601-e618. https://doi.org/10.1128/MCB.00601-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meyer MB, Benkusky NA, Sen B, Rubin J, Pike JW (2016) Epigenetic plasticity drives adipogenic and osteogenic differentiation of marrow-derived mesenchymal stem cells. J Biol Chem 291(34):17829–17847. https://doi.org/10.1074/jbc.M116.736538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhuang H, Zhang X, Zhu C, Tang X, Yu F, Shang GW, Cai X (2016) Molecular mechanisms of PPAR-gamma governing MSC osteogenic and adipogenic differentiation. Curr Stem Cell Res Ther 11(3):255–264. https://doi.org/10.2174/1574888x10666150531173309

    Article  CAS  PubMed  Google Scholar 

  15. Zhao XY, Chen XY, Zhang ZJ, Kang Y, Liao WM, Yu WH, Xiang AP (2015) Expression patterns of transcription factor PPARgamma and C/EBP family members during in vitro adipogenesis of human bone marrow mesenchymal stem cells. Cell Biol Int 39(4):457–465. https://doi.org/10.1002/cbin.10415

    Article  CAS  PubMed  Google Scholar 

  16. Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4(4):263–273. https://doi.org/10.1016/j.cmet.2006.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29. https://doi.org/10.1016/s0092-8674(01)00622-5

    Article  CAS  PubMed  Google Scholar 

  18. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764. https://doi.org/10.1016/s0092-8674(00)80258-5

    Article  CAS  PubMed  Google Scholar 

  19. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X et al (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 23(7):1128–1139. https://doi.org/10.1038/cdd.2015.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K et al (2004) PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113(6):846–855. https://doi.org/10.1172/jci19900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rauch A, Haakonsson AK, Madsen JGS, Larsen M, Forss I, Madsen MR, Van Hauwaert EL, Wiwie C, Jespersen NZ, Tencerova M et al (2019) Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nat Genet 51(4):716–727. https://doi.org/10.1038/s41588-019-0359-1

    Article  CAS  PubMed  Google Scholar 

  22. Juel Mortensen L, Lorenzen M, Jorgensen N, Andersson AM, Nielsen JE, Petersen LI, Lanske B, Juul A, Hansen JB, Blomberg Jensen M (2019) Possible link between FSH and RANKL release from adipocytes in men with impaired gonadal function including Klinefelter syndrome. Bone 123:103–114. https://doi.org/10.1016/j.bone.2019.03.022

    Article  CAS  PubMed  Google Scholar 

  23. Yu B, Huo L, Liu Y, Deng P, Szymanski J, Li J, Luo X, Hong C, Lin J, Wang CY (2018) PGC-1α controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ. Cell Stem Cell 23(2):193–209. https://doi.org/10.1016/j.stem.2018.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li H, Liu P, Xu S, Li Y, Dekker JD, Li B, Fan Y, Zhang Z, Hong Y, Yang G et al (2017) FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest 127(4):1241–1253. https://doi.org/10.1172/JCI89511

    Article  PubMed  PubMed Central  Google Scholar 

  25. Seong S, Kim JH, Kim K, Kim I, Koh JT, Kim N (2021) Alternative regulatory mechanism for the maintenance of bone homeostasis via STAT5-mediated regulation of the differentiation of BMSCs into adipocytes. Exp Mol Med 53(5):848–863. https://doi.org/10.1038/s12276-021-00616-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Almalki SG, Agrawal DK (2016) Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 92(1–2):41–51. https://doi.org/10.1016/j.diff.2016.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen N, Schill RL, O’Donnell M, Xu K, Bagchi DP, MacDougald OA, Koenig RJ, Xu B (2019) The transcription factor NKX1-2 promotes adipogenesis and may contribute to a balance between adipocyte and osteoblast differentiation. J Biol Chem 294(48):18408–18420. https://doi.org/10.1074/jbc.RA119.007967

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cakouros D, Gronthos S (2020) Epigenetic regulators of mesenchymal stem/stromal cell lineage determination. Curr Osteoporos Rep 18(5):597–605. https://doi.org/10.1007/s11914-020-00616-0

    Article  PubMed  PubMed Central  Google Scholar 

  29. de Sa PM, Richard AJ, Hang H, Stephens JM (2017) Transcriptional regulation of adipogenesis Compr Physiol 7(2):635–674. https://doi.org/10.1002/cphy.c160022

    Article  Google Scholar 

  30. Guo Q, Guo Q, Xiao Y, Li C, Huang Y, Luo X (2020) Regulation of bone marrow mesenchymal stem cell fate by long non-coding RNA. Bone 141:115617. https://doi.org/10.1016/j.bone.2020.115617

    Article  CAS  PubMed  Google Scholar 

  31. Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F (2013) WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab 17(5):745–755. https://doi.org/10.1016/j.cmet.2013.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A (2009) Adipogenesis and WNT signalling. Trends Endocrinol Metab 20(1):16–24. https://doi.org/10.1016/j.tem.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  33. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA (2000) Inhibition of adipogenesis by Wnt signaling. Science 289(5481):950–953. https://doi.org/10.1126/science.289.5481.950

    Article  CAS  PubMed  Google Scholar 

  34. Moldes M, Zuo Y, Morrison RF, Silva D, Park BH, Liu J, Farmer SR (2003) Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. Biochem J 376(Pt 3):607–613. https://doi.org/10.1042/BJ20030426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ozkul Y, Galderisi U (2016) The impact of epigenetics on mesenchymal stem cell biology. J Cell Physiol 231(11):2393–2401. https://doi.org/10.1002/jcp.25371

    Article  CAS  PubMed  Google Scholar 

  36. Wang R, Wang Y, Zhu L, Liu Y, Li W (2020) Epigenetic regulation in mesenchymal stem cell aging and differentiation and osteoporosis. Stem Cells Int 2020:8836258. https://doi.org/10.1155/2020/8836258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hemming S, Cakouros D, Isenmann S, Cooper L, Menicanin D, Zannettino A, Gronthos S (2014) EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells 32(3):802–815. https://doi.org/10.1002/stem.1573

    Article  CAS  PubMed  Google Scholar 

  38. Wang L, Jin Q, Lee JE, Su IH, Ge K (2010) Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci USA 107(16):7317–7322. https://doi.org/10.1073/pnas.1000031107

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang C, Wang J, Li J, Hu G, Shan S, Li Q, Zhang X (2016) KDM5A controls bone morphogenic protein 2-induced osteogenic differentiation of bone mesenchymal stem cells during osteoporosis. Cell Death Dis 7(8):e2335. https://doi.org/10.1038/cddis.2016.238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qi Q, Wang Y, Wang X, Yang J, Xie Y, Zhou J, Li X, Wang B (2020) Histone demethylase KDM4A regulates adipogenic and osteogenic differentiation via epigenetic regulation of C/EBPalpha and canonical Wnt signaling. Cell Mol Life Sci 77(12):2407–2421. https://doi.org/10.1007/s00018-019-03289-w

    Article  CAS  PubMed  Google Scholar 

  41. Deng P, Yuan Q, Cheng Y, Li J, Liu Z, Liu Y, Li Y, Su T, Wang J, Salvo ME et al (2021) Loss of KDM4B exacerbates bone-fat imbalance and mesenchymal stromal cell exhaustion in skeletal aging. Cell Stem Cell 28(6):1057–1073. https://doi.org/10.1016/j.stem.2021.01.010

    Article  CAS  PubMed  Google Scholar 

  42. Ye L, Fan Z, Yu B, Chang J, Al Hezaimi K, Zhou X, Park NH, Wang CY (2012) Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell 11(1):50–61. https://doi.org/10.1016/j.stem.2012.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu T, Kitano A, Luu V, Dawson B, Hoegenauer KA, Lee BH, Nakada D (2019) Bmi1 suppresses adipogenesis in the hematopoietic stem cell niche. Stem Cell Rep 13(3):545–558. https://doi.org/10.1016/j.stemcr.2019.05.027

    Article  CAS  Google Scholar 

  44. Wang L, Niu N, Li L, Shao R, Ouyang H, Zou W (2018) H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells. PLoS Biol 16(11):e2006522. https://doi.org/10.1371/journal.pbio.2006522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoshioka H, Yoshiko Y (2017) The roles of long non-protein-coding RNAs in osteo-adipogenic lineage commitment. Int J Mol Sci 18(6):1236. https://doi.org/10.3390/ijms18061236

    Article  CAS  PubMed Central  Google Scholar 

  46. Peschansky VJ, Wahlestedt C (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9(1):3–12. https://doi.org/10.4161/epi.27473

    Article  CAS  PubMed  Google Scholar 

  47. Kaikkonen MU, Lam MT, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90(3):430–440. https://doi.org/10.1093/cvr/cvr097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  49. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  50. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139. https://doi.org/10.1038/nrm2632

    Article  CAS  PubMed  Google Scholar 

  51. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mourelatos Z (2008) Small RNAs: the seeds of silence. Nature 455(7209):44–45. https://doi.org/10.1038/455044a

    Article  CAS  PubMed  Google Scholar 

  53. Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10(2):116–125. https://doi.org/10.1038/nrm2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ivey KN, Srivastava D (2010) MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7(1):36–41. https://doi.org/10.1016/j.stem.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  55. Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, Xia ZY, Zhou HD, Cao X, Xie H et al (2015) MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 125(4):1509–1522. https://doi.org/10.1172/JCI77716

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hamam D, Ali D, Vishnubalaji R, Hamam R, Al-Nbaheen M, Chen L, Kassem M, Aldahmash A, Alajez NM (2014) microRNA-320/RUNX2 axis regulates adipocytic differentiation of human mesenchymal (skeletal) stem cells. Cell Death Dis 5:e1499. https://doi.org/10.1038/cddis.2014.462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo Y, Li L, Gao J, Chen X, Sang Q (2017) miR-214 suppresses the osteogenic differentiation of bone marrow-derived mesenchymal stem cells and these effects are mediated through the inhibition of the JNK and p38 pathways. Int J Mol Med 39(1):71–80. https://doi.org/10.3892/ijmm.2016.2826

    Article  CAS  PubMed  Google Scholar 

  58. Xi FX, Wei CS, Xu YT, Ma L, He YL, Shi XE, Yang GS, Yu TY (2019) MicroRNA-214-3p targeting Ctnnb1 promotes 3T3-L1 preadipocyte differentiation by interfering with the Wnt/beta-catenin signaling pathway. Int J Mol Sci 20(8):1816. https://doi.org/10.3390/ijms20081816

    Article  CAS  PubMed Central  Google Scholar 

  59. Qiu J, Huang G, Na N, Chen L (2018) MicroRNA-214-5p/TGF-beta/Smad2 signaling alters adipogenic differentiation of bone marrow stem cells in postmenopausal osteoporosis. Mol Med Rep 17(5):6301–6310. https://doi.org/10.3892/mmr.2018.8713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang J, Zhao L, Xing L, Chen D (2010) MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28(2):357–364. https://doi.org/10.1002/stem.288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. He H, Chen K, Wang F, Zhao L, Wan X, Wang L, Mo Z (2015) miR-204-5p promotes the adipogenic differentiation of human adipose-derived mesenchymal stem cells by modulating DVL3 expression and suppressing Wnt/beta-catenin signaling. Int J Mol Med 35(6):1587–1595. https://doi.org/10.3892/ijmm.2015.2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shuai Y, Yang R, Mu R, Yu Y, Rong L, Jin L (2019) MiR-199a-3p mediates the adipogenic differentiation of bone marrow-derived mesenchymal stem cells by regulating KDM6A/WNT signaling. Life Sci 220:84–91. https://doi.org/10.1016/j.lfs.2019.01.051

    Article  CAS  PubMed  Google Scholar 

  63. Wang D, Cai G, Wang H, He J (2020) TRAF3, a Target of microRNA-363-3p, suppresses senescence and regulates the balance between osteoblastic and adipocytic differentiation of rat bone marrow-derived mesenchymal stem cells. Stem Cells Dev 29(11):737–745. https://doi.org/10.1089/scd.2019.0276

    Article  CAS  PubMed  Google Scholar 

  64. Lin Z, He H, Wang M, Liang J (2019) MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif 52(6):e12688. https://doi.org/10.1111/cpr.12688

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li Y, Yang F, Gao M, Gong R, Jin M, Liu T, Sun Y, Fu Y, Huang Q, Zhang W et al (2019) miR-149-3p regulates the switch between adipogenic and osteogenic differentiation of BMSCs by targeting FTO. Mol Ther Nucleic Acids 17:590–600. https://doi.org/10.1016/j.omtn.2019.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jeong BC, Kang IH, Hwang YC, Kim SH, Koh JT (2014) MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression. Cell Death Dis 5:e1532. https://doi.org/10.1038/cddis.2014.485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. You L, Pan L, Chen L, Gu W, Chen J (2016) MiR-27a is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis. Cell Physiol Biochem 39(1):253–265. https://doi.org/10.1159/000445621

    Article  CAS  PubMed  Google Scholar 

  68. Chen SZ, Xu X, Ning LF, Jiang WY, Xing C, Tang QQ, Huang HY (2015) miR-27 impairs the adipogenic lineage commitment via targeting lysyl oxidase. Obesity (Silver Spring) 23(12):2445–2453. https://doi.org/10.1002/oby.21319

    Article  CAS  Google Scholar 

  69. Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z (2009) A role of miR-27 in the regulation of adipogenesis. FEBS J 276(8):2348–2358. https://doi.org/10.1111/j.1742-4658.2009.06967.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kang T, Lu W, Xu W, Anderson L, Bacanamwo M, Thompson W, Chen YE, Liu D (2020) Correction: MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem 295(48):16468. https://doi.org/10.1074/jbc.AAC120.016601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Qiao L, Liu D, Li CG, Wang YJ (2018) MiR-203 is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis. Eur Rev Med Pharmacol Sci 22(18):5804–5814. https://doi.org/10.26355/eurrev_201809_15906

    Article  CAS  PubMed  Google Scholar 

  72. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154(1):26–46. https://doi.org/10.1016/j.cell.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gao Y, Patil S, Qian A (2020) The role of microRNAs in bone metabolism and disease. Int J Mol Sci 21(17):6081. https://doi.org/10.3390/ijms21176081

    Article  CAS  PubMed Central  Google Scholar 

  74. Ju C, Liu R, Zhang YW, Zhang Y, Zhou R, Sun J, Lv XB, Zhang Z (2019) Mesenchymal stem cell-associated lncRNA in osteogenic differentiation. Biomed Pharmacother 115:108912. https://doi.org/10.1016/j.biopha.2019.108912

    Article  CAS  PubMed  Google Scholar 

  75. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914. https://doi.org/10.1016/j.molcel.2011.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407. https://doi.org/10.1016/j.cell.2018.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang L, Li Y, Gong R, Gao M, Feng C, Liu T, Sun Y, Jin M, Wang D, Yuan Y et al (2019) The long non-coding RNA-ORLNC1 regulates bone mass by directing mesenchymal stem cell fate. Mol Ther 27(2):394–410. https://doi.org/10.1016/j.ymthe.2018.11.019

    Article  CAS  PubMed  Google Scholar 

  78. Li CJ, Xiao Y, Yang M, Su T, Sun X, Guo Q, Huang Y, Luo XH (2018) Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J Clin Invest 128(12):5251–5266. https://doi.org/10.1172/JCI99044

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li M, Xie Z, Wang P, Li J, Liu W, Tang S, Liu Z, Wu X, Wu Y, Shen H (2018) The long noncoding RNA GAS5 negatively regulates the adipogenic differentiation of MSCs by modulating the miR-18a/CTGF axis as a ceRNA. Cell Death Dis 9(5):554. https://doi.org/10.1038/s41419-018-0627-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li M, Xie Z, Li J, Lin J, Zheng G, Liu W, Tang S, Cen S, Ye G, Li Z et al (2020) GAS5 protects against osteoporosis by targeting UPF1/SMAD7 axis in osteoblast differentiation. eLife 9:e59079. https://doi.org/10.7554/eLife.59079

  81. Wang X, Zhao D, Zhu Y, Dong Y, Liu Y (2019) Long non-coding RNA GAS5 promotes osteogenic differentiation of bone marrow mesenchymal stem cells by regulating the miR-135a-5p/FOXO1 pathway. Mol Cell Endocrinol 496:110534. https://doi.org/10.1016/j.mce.2019.110534

    Article  CAS  PubMed  Google Scholar 

  82. Kalwa M, Hanzelmann S, Otto S, Kuo CC, Franzen J, Joussen S, Fernandez-Rebollo E, Rath B, Koch C, Hofmann A et al (2016) The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation. Nucleic Acids Res 44(22):10631–10643. https://doi.org/10.1093/nar/gkw802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang Y, Liu W, Liu Y, Cui J, Zhao Z, Cao H, Fu Z, Liu B (2018) Long noncoding RNA H19 mediates LCoR to impact the osteogenic and adipogenic differentiation of mBMSCs in mice through sponging miR-188. J Cell Physiol 233(9):7435–7446. https://doi.org/10.1002/jcp.26589

    Article  CAS  PubMed  Google Scholar 

  84. Huang Y, Zheng Y, Jin C, Li X, Jia L, Li W (2016) Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases. Sci Rep 6:28897. https://doi.org/10.1038/srep28897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu J, Zhao J, Sun L, Pan Y, Wang H, Zhang WB (2018) Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138. Bone 108:62–70. https://doi.org/10.1016/j.bone.2017.12.013

    Article  CAS  PubMed  Google Scholar 

  86. Li G, Yun X, Ye K, Zhao H, An J, Zhang X, Han X, Li Y, Wang S (2020) Long non-coding RNA-H19 stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via the microRNA-149/SDF-1 axis. J Cell Mol Med 24(9):4944–4955. https://doi.org/10.1111/jcmm.15040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li Z, Jin C, Chen S, Zheng Y, Huang Y, Jia L, Ge W, Zhou Y (2017) Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Mol Cell Biochem 433(1–2):51–60. https://doi.org/10.1007/s11010-017-3015-z

    Article  CAS  PubMed  Google Scholar 

  88. Zhuang W, Ge X, Yang S, Huang M, Zhuang W, Chen P, Zhang X, Fu J, Qu J, Li B (2015) Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells 33(6):1985–1997. https://doi.org/10.1002/stem.1989

    Article  CAS  PubMed  Google Scholar 

  89. Tang S, Xie Z, Wang P, Li J, Wang S, Liu W, Li M, Wu X, Su H, Cen S et al (2019) LncRNA-OG promotes the osteogenic differentiation of bone marrow-derived mesenchymal stem cells under the regulation of hnRNPK. Stem Cells 37(2):270–283. https://doi.org/10.1002/stem.2937

    Article  CAS  PubMed  Google Scholar 

  90. Wang CG, Liao Z, Xiao H, Liu H, Hu YH, Liao QD, Zhong D (2019) LncRNA KCNQ1OT1 promoted BMP2 expression to regulate osteogenic differentiation by sponging miRNA-214. Exp Mol Pathol 107:77–84. https://doi.org/10.1016/j.yexmp.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  91. Jin C, Jia L, Tang Z, Zheng Y (2020) Long non-coding RNA MIR22HG promotes osteogenic differentiation of bone marrow mesenchymal stem cells via PTEN/ AKT pathway. Cell Death Dis 11(7):601. https://doi.org/10.1038/s41419-020-02813-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang J, Tao Z, Wang Y (2018) Long noncoding RNA DANCR regulates the proliferation and osteogenic differentiation of human bone-derived marrow mesenchymal stem cells via the p38 MAPK pathway. Int J Mol Med 41(1):213–219. https://doi.org/10.3892/ijmm.2017.3215

    Article  CAS  PubMed  Google Scholar 

  93. Feng L, Shi L, Lu YF, Wang B, Tang T, Fu WM, He W, Li G, Zhang JF (2018) Linc-ROR promotes osteogenic differentiation of mesenchymal stem cells by functioning as a competing endogenous RNA for miR-138 and miR-145. Mol Ther Nucleic Acids 11:345–353. https://doi.org/10.1016/j.omtn.2018.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Krampera M, Galipeau J, Shi Y, Tarte K, Sensebe L, MSC Committee of the International Society for Cellular Therapy (ISCT) (2013) Immunological characterization of multipotent mesenchymal stromal cells–The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy 15(9):1054–1061. https://doi.org/10.1016/j.jcyt.2013.02.010

    Article  PubMed  Google Scholar 

  95. Fu X, Yang H, Zhang H, Wang G, Liu K, Gu Q, Tao Y, Chen G, Jiang X, Li G et al (2016) Improved osteogenesis and upregulated immunogenicity in human placenta-derived mesenchymal stem cells primed with osteogenic induction medium. Stem Cell Res Ther 7(1):138. https://doi.org/10.1186/s13287-016-0400-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gu YZ, Xue Q, Chen YJ, Yu GH, Qing MD, Shen Y, Wang MY, Shi Q, Zhang XG (2013) Different roles of PD-L1 and FasL in immunomodulation mediated by human placenta-derived mesenchymal stem cells. Hum Immunol 74(3):267–276. https://doi.org/10.1016/j.humimm.2012.12.011

    Article  CAS  PubMed  Google Scholar 

  97. Huang Y, Yin Y, Gu Y, Gu Q, Yang H, Zhou Z, Shi Q (2020) Characterization and immunogenicity of bone marrow-derived mesenchymal stem cells under osteoporotic conditions. Sci China Life Sci 63(3):429–442. https://doi.org/10.1007/s11427-019-1555-9

    Article  CAS  PubMed  Google Scholar 

  98. Li JY, Tawfeek H, Bedi B, Yang X, Adams J, Gao KY, Zayzafoon M, Weitzmann MN, Pacifici R (2011) Ovariectomy dysregulates osteoblast and osteoclast formation through the T-cell receptor CD40 ligand. Proc Natl Acad Sci USA 108(2):768–773. https://doi.org/10.1073/pnas.1013492108

    Article  PubMed  Google Scholar 

  99. Baker N, Boyette LB, Tuan RS (2015) Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone 70:37–47. https://doi.org/10.1016/j.bone.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  100. Siegel G, Kluba T, Hermanutz-Klein U, Bieback K, Northoff H, Schafer R (2013) Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med 11:146. https://doi.org/10.1186/1741-7015-11-146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yu JM, Wu X, Gimble JM, Guan X, Freitas MA, Bunnell BA (2011) Age-related changes in mesenchymal stem cells derived from rhesus macaque bone marrow. Aging Cell 10(1):66–79. https://doi.org/10.1111/j.1474-9726.2010.00646.x

    Article  CAS  PubMed  Google Scholar 

  102. Picke AK, Campbell GM, Bluher M, Krugel U, Schmidt FN, Tsourdi E, Winzer M, Rauner M, Vukicevic V, Busse B et al (2018) Thy-1 (CD90) promotes bone formation and protects against obesity. Sci Transl Med 10(453). https://doi.org/10.1126/scitranslmed.aao6806

  103. Maijenburg MW, Kleijer M, Vermeul K, Mul EP, van Alphen FP, van der Schoot CE, Voermans C (2012) The composition of the mesenchymal stromal cell compartment in human bone marrow changes during development and aging. Haematologica 97(2):179–183. https://doi.org/10.3324/haematol.2011.047753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sebo ZL, Rendina-Ruedy E, Ables GP, Lindskog DM, Rodeheffer MS, Fazeli PK, Horowitz MC (2019) Bone marrow adiposity: basic and clinical implications. Endocr Rev 40(5):1187–1206. https://doi.org/10.1210/er.2018-00138

    Article  PubMed  PubMed Central  Google Scholar 

  105. Scheller EL, Rosen CJ (2014) What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci 1311(1):14–30. https://doi.org/10.1111/nyas.12327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tavassoli M (1976) Marrow adipose cells Histochemical identification of labile and stable components. Arch Pathol Lab Med 100(1):16–18

    CAS  PubMed  Google Scholar 

  107. Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S, Schell B, Wu B, Ding S-Y, Bredella MA, Fazeli PK et al (2015) Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun 6(1):1–15. https://doi.org/10.1038/ncomms8808

    Article  CAS  Google Scholar 

  108. Bredella MA, Fazeli PK, Daley SM, Miller KK, Rosen CJ, Klibanski A, Torriani M (2014) Marrow fat composition in anorexia nervosa. Bone 66:199–204. https://doi.org/10.1016/j.bone.2014.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Scheller EL, Burr AA, MacDougald OA, Cawthorn WP (2016) Inside out: bone marrow adipose tissue as a source of circulating adiponectin. Adipocyte 5(3):251–269. https://doi.org/10.1080/21623945.2016.1149269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cawthorn WP, Scheller EL, Parlee SD, Pham HA, Learman BS, Redshaw CMH, Sulston RJ, Burr AA, Das AK, Simon BR et al (2016) Expansion of bone marrow adipose tissue during caloric restriction is associated with increased circulating glucocorticoids and not with hypoleptinemia. Endocrinology 157(2):508–521. https://doi.org/10.1210/en.2015-1477

    Article  CAS  PubMed  Google Scholar 

  111. Li Z, Hardij J, Bagchi DP, Scheller EL, MacDougald OA (2018) Development, regulation, metabolism and function of bone marrow adipose tissues. Bone 110:134–140. https://doi.org/10.1016/j.bone.2018.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Scheller EL, Khandaker S, Learman BS, Cawthorn WP, Anderson LM, Pham HA, Robles H, Wang Z, Li Z, Parlee SD et al (2019) Bone marrow adipocytes resist lipolysis and remodeling in response to beta-adrenergic stimulation. Bone 118:32–41. https://doi.org/10.1016/j.bone.2018.01.016

    Article  CAS  PubMed  Google Scholar 

  113. Craft CS, Li Z, MacDougald OA, Scheller EL (2018) Molecular differences between subtypes of bone marrow adipocytes. Curr Mol Biol Rep 4(1):16–23

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhou BO, Yu H, Yue R, Zhao Z, Rios JJ, Naveiras O, Morrison SJ (2017) Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol 19(8):891–903. https://doi.org/10.1038/ncb3570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zou W, Rohatgi N, Brestoff JR, Li Y, Barve RA, Tycksen E, Kim Y, Silva MJ, Teitelbaum SL (2020) Ablation of fat cells in adult mice induces massive bone gain. Cell Metab 32(5):801–813. https://doi.org/10.1016/j.cmet.2020.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhong L, Yao L, Tower RJ, Wei Y, Miao Z, Park J, Shrestha R, Wang L, Yu W, Holdreith N et al (2020) Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. eLife 9:e54695. https://doi.org/10.7554/eLife.54695

  117. Muruganandan S, Ionescu AM, Sinal CJ (2020) At the crossroads of the adipocyte and osteoclast differentiation programs: future therapeutic perspectives. Int J Mol Sci 21(7):2277. https://doi.org/10.3390/ijms21072277

    Article  CAS  PubMed Central  Google Scholar 

  118. Wei W, Zeve D, Wang X, Du Y, Tang W, Dechow PC, Graff JM, Wan Y (2011) Osteoclast progenitors reside in the peroxisome proliferator-activated receptor gamma-expressing bone marrow cell population. Mol Cell Biol 31(23):4692–4705. https://doi.org/10.1128/MCB.05979-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wei W, Wang X, Yang M, Smith LC, Dechow PC, Sonoda J, Evans RM, Wan Y (2010) PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab 11(6):503–516. https://doi.org/10.1016/j.cmet.2010.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen W, Zhu G, Hao L, Wu M, Ci H, Li YP (2013) C/EBPalpha regulates osteoclast lineage commitment. Proc Natl Acad Sci USA 110(18):7294–7299. https://doi.org/10.1073/pnas.1211383110

    Article  PubMed  PubMed Central  Google Scholar 

  121. Takeshita S, Fumoto T, Naoe Y, Ikeda K (2014) Age-related marrow adipogenesis is linked to increased expression of RANKL. J Biol Chem 289(24):16699–16710. https://doi.org/10.1074/jbc.M114.547919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Beekman KM, Zwaagstra M, Veldhuis-Vlug AG, van Essen HW, den Heijer M, Maas M, Kerckhofs G, Parac-Vogt TN, Bisschop PH, Bravenboer N (2019) Ovariectomy increases RANKL protein expression in bone marrow adipocytes of C3H/HeJ mice. Am J Physiol Endocrinol Metab 317(6):E1050–E1054. https://doi.org/10.1152/ajpendo.00142.2019

    Article  CAS  PubMed  Google Scholar 

  123. Goto H, Osaki M, Fukushima T, Sakamoto K, Hozumi A, Baba H, Shindo H (2011) Human bone marrow adipocytes support dexamethasone-induced osteoclast differentiation and function through RANKL expression. Biomed Res 32(1):37–44. https://doi.org/10.2220/biomedres.32.37

    Article  CAS  PubMed  Google Scholar 

  124. Yang J, Chen S, Zong Z, Yang L, Liu D, Bao Q, Du W (2020) The increase in bone resorption in early-stage type I diabetic mice is induced by RANKL secreted by increased bone marrow adipocytes. Biochem Biophys Res Commun 525(2):433–439. https://doi.org/10.1016/j.bbrc.2020.02.079

    Article  CAS  PubMed  Google Scholar 

  125. Hu Y, Li X, Zhi X, Cong W, Huang B, Chen H, Wang Y, Li Y, Wang L, Fang C et al (2021) RANKL from bone marrow adipose lineage cells promotes osteoclast formation and bone loss. EMBO Rep 22:e52481. https://doi.org/10.15252/embr.202152481

    Article  CAS  PubMed  Google Scholar 

  126. Onji M, Werschler N, Penninger J (2021) A critical relationship between bone and fat: the role of bone marrow adipose-derived RANKL in bone metabolism. EMBO Rep 22:e52986. https://doi.org/10.15252/embr.202152986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yu W, Zhong L, Yao L, Wei Y, Gui T, Li Z, Kim H, Holdreith N, Jiang X, Tong W et al (2021) Bone marrow adipogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss. J Clin Invest 131(2):e140214. https://doi.org/10.1172/JCI140214

    Article  CAS  PubMed Central  Google Scholar 

  128. Laharrague P, Fontanilles AM, Tkaczuk J, Corberand JX, Penicaud L, Casteilla L (2000) Inflammatory/haematopoietic cytokine production by human bone marrow adipocytes. Eur Cytokine Netw 11(4):634–639

    CAS  PubMed  Google Scholar 

  129. Caers J, Deleu S, Belaid Z, De Raeve H, Van Valckenborgh E, De Bruyne E, Defresne MP, Van Riet I, Van Camp B, Vanderkerken K (2007) Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia 21(7):1580–1584. https://doi.org/10.1038/sj.leu.2404658

    Article  CAS  PubMed  Google Scholar 

  130. Ferland-McCollough D, Maselli D, Spinetti G, Sambataro M, Sullivan N, Blom A, Madeddu P (2018) MCP-1 feedback loop between adipocytes and mesenchymal stromal cells causes fat accumulation and contributes to hematopoietic stem cell rarefaction in the bone marrow of patients with diabetes. Diabetes 67(7):1380–1394. https://doi.org/10.2337/db18-0044

    Article  CAS  PubMed  Google Scholar 

  131. Liu L-F, Shen W-J, Ueno M, Patel S, Kraemer FB (2011) Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics 12(1):1–18. https://doi.org/10.1186/1471-2164-12-212

    Article  CAS  Google Scholar 

  132. Brincat SD, Borg M, Camilleri G, Calleja-Agius J (2014) The role of cytokines in postmenopausal osteoporosis. Minerva Ginecol 66(4):391–407

    CAS  PubMed  Google Scholar 

  133. Zha L, He L, Liang Y, Qin H, Yu B, Chang L, Xue L (2018) TNF-alpha contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation. Biomed Pharmacother 102:369–374. https://doi.org/10.1016/j.biopha.2018.03.080

    Article  CAS  PubMed  Google Scholar 

  134. Muruganandan S, Roman AA, Sinal CJ (2010) Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells. J Bone Miner Res 25(2):222–234. https://doi.org/10.1359/jbmr.091106

    Article  CAS  PubMed  Google Scholar 

  135. Muruganandan S, Dranse HJ, Rourke JL, McMullen NM, Sinal CJ (2013) Chemerin neutralization blocks hematopoietic stem cell osteoclastogenesis. Stem Cells 31(10):2172–2182. https://doi.org/10.1002/stem.1450

    Article  CAS  PubMed  Google Scholar 

  136. Muruganandan S, Parlee SD, Rourke JL, Ernst MC, Goralski KB, Sinal CJ (2011) Chemerin, a novel peroxisome proliferator-activated receptor gamma (PPARgamma) target gene that promotes mesenchymal stem cell adipogenesis. J Biol Chem 286(27):23982–23995. https://doi.org/10.1074/jbc.M111.220491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Thommesen L, Stunes AK, Monjo M, Grosvik K, Tamburstuen MV, Kjobli E, Lyngstadaas SP, Reseland JE, Syversen U (2006) Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem 99(3):824–834. https://doi.org/10.1002/jcb.20915

    Article  CAS  PubMed  Google Scholar 

  138. Duque G, Li W, Vidal C, Bermeo S, Rivas D, Henderson J (2013) Pharmacological inhibition of PPARgamma increases osteoblastogenesis and bone mass in male C57BL/6 mice. J Bone Miner Res 28(3):639–648. https://doi.org/10.1002/jbmr.1782

    Article  CAS  PubMed  Google Scholar 

  139. Marciano DP, Kuruvilla DS, Boregowda SV, Asteian A, Hughes TS, Garcia-Ordonez R, Corzo CA, Khan TM, Novick SJ, Park H et al (2015) Pharmacological repression of PPARgamma promotes osteogenesis. Nat Commun 6:7443. https://doi.org/10.1038/ncomms8443

    Article  CAS  PubMed  Google Scholar 

  140. Choi RB, Bullock WA, Hoggatt AM, Loots GG, Genetos DC, Robling AG (2021) Improving bone health by optimizing the anabolic action of wnt inhibitor multitargeting. JBMR Plus 5(5):e10462. https://doi.org/10.1002/jbm4.10462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Takada I, Kouzmenko AP, Kato S (2009) Molecular switching of osteoblastogenesis versus adipogenesis: implications for targeted therapies. Expert Opin Ther Targets 13(5):593–603. https://doi.org/10.1517/14728220902915310

    Article  CAS  PubMed  Google Scholar 

  142. Li S, Huang B, Jiang B, Gu M, Yang X, Yin Y (2019) Sclerostin antibody mitigates estrogen deficiency-inducted marrow lipid accumulation assessed by proton MR spectroscopy. Front Endocrinol (Lausanne) 10:159. https://doi.org/10.3389/fendo.2019.00159

    Article  CAS  Google Scholar 

  143. Dudakovic A, Camilleri ET, Riester SM, Paradise CR, Gluscevic M, O’Toole TM, Thaler R, Evans JM, Yan H, Subramaniam M et al (2016) Enhancer of Zeste homolog 2 inhibition stimulates bone formation and mitigates bone loss caused by ovariectomy in skeletally mature mice. J Biol Chem 291(47):24594–24606. https://doi.org/10.1074/jbc.M116.740571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jing H, Liao L, An Y, Su X, Liu S, Shuai Y, Zhang X, Jin Y (2016) Suppression of EZH2 prevents the shift of osteoporotic MSC fate to adipocyte and enhances bone formation during osteoporosis. Mol Ther 24(2):217–229. https://doi.org/10.1038/mt.2015.152

    Article  CAS  PubMed  Google Scholar 

  145. Lv L, Ge W, Liu Y, Lai G, Liu H, Li W, Zhou Y (2016) Lysine-specific demethylase 1 inhibitor rescues the osteogenic ability of mesenchymal stem cells under osteoporotic conditions by modulating H3K4 methylation. Bone Res 4:16037. https://doi.org/10.1038/boneres.2016.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xu S, De Veirman K, Evans H, Santini GC, Vande Broek I, Leleu X, De Becker A, Van Camp B, Croucher P, Vanderkerken K et al (2013) Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo. Acta Pharmacol Sin 34(5):699–709. https://doi.org/10.1038/aps.2012.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hu X, Zhang X, Dai L, Zhu J, Jia Z, Wang W, Zhou C, Ao Y (2013) Histone deacetylase inhibitor trichostatin A promotes the osteogenic differentiation of rat adipose-derived stem cells by altering the epigenetic modifications on Runx2 promoter in a BMP signaling-dependent manner. Stem Cells Dev 22(2):248–255. https://doi.org/10.1089/scd.2012.0105

    Article  CAS  PubMed  Google Scholar 

  148. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368(18):1685–1694. https://doi.org/10.1056/NEJMoa1209026

    Article  CAS  PubMed  Google Scholar 

  149. Itaka K, Ohba S, Miyata K, Kawaguchi H, Nakamura K, Takato T, Chung UI, Kataoka K (2007) Bone regeneration by regulated in vivo gene transfer using biocompatible polyplex nanomicelles. Mol Ther 15(9):1655–1662. https://doi.org/10.1038/sj.mt.6300218

    Article  CAS  PubMed  Google Scholar 

  150. Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66. https://doi.org/10.1186/1741-7015-9-66

    Article  PubMed  PubMed Central  Google Scholar 

  151. Dong P, Zhu D, Deng X, Zhang Y, Ma J, Sun X, Liu Y (2019) Effect of hydroxyapatite nanoparticles and wedelolactone on osteoblastogenesis from bone marrow mesenchymal stem cells. J Biomed Mater Res A 107(1):145–153. https://doi.org/10.1002/jbm.a.36541

    Article  CAS  PubMed  Google Scholar 

  152. Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SE, Vader P (2020) Extracellular vesicles as drug delivery systems: Why and how? Adv Drug Deliv Rev 159:332–343. https://doi.org/10.1016/j.addr.2020.04.004

    Article  CAS  PubMed  Google Scholar 

  153. Hu Y, Li X, Zhang Q, Gu Z, Luo Y, Guo J, Wang X, Jing Y, Chen X, Su J (2021) Exosome-guided bone targeted delivery of Antagomir-188 as an anabolic therapy for bone loss. Bioact Mater 6(9):2905–2913. https://doi.org/10.1016/j.bioactmat.2021.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jiang F, Yin F, Lin Y, Xia W, Zhou L, Pan C, Wang N, Shan H, Zhou Z, Yu X (2020) The promotion of bone regeneration through CS/GP-CTH/antagomir-133a/b sustained release system. Nanomedicine 24:102116. https://doi.org/10.1016/j.nano.2019.102116

    Article  CAS  PubMed  Google Scholar 

  155. Bu W, Xu X, Wang Z, Jin N, Liu L, Liu J, Zhu S, Zhang K, Jelinek R, Zhou D et al (2020) Ascorbic acid-PEI carbon dots with osteogenic effects as miR-2861 carriers to effectively enhance bone regeneration. ACS Appl Mater Interfaces 12(45):50287–50302. https://doi.org/10.1021/acsami.0c15425

    Article  CAS  PubMed  Google Scholar 

  156. Sui L, Wang M, Han Q, Yu L, Zhang L, Zheng L, Lian J, Zhang J, Valverde P, Xu Q et al (2018) A novel Lipidoid-MicroRNA formulation promotes calvarial bone regeneration. Biomaterials 177:88–97. https://doi.org/10.1016/j.biomaterials.2018.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tao SC, Rui BY, Wang QY, Zhou D, Zhang Y, Guo SC (2018) Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds. Drug Deliv 25(1):241–255. https://doi.org/10.1080/10717544.2018.1425774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tai Z, Ma J, Ding J, Pan H, Chai R, Zhu C, Cui Z, Chen Z, Zhu Q (2020) Aptamer-functionalized dendrimer delivery of plasmid-encoding lncRNA MEG3 enhances gene therapy in castration-resistant prostate cancer. Int J Nanomedicine 15:10305–10320. https://doi.org/10.2147/IJN.S282107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Botolin S, McCabe LR (2006) Inhibition of PPARgamma prevents type I diabetic bone marrow adiposity but not bone loss. J Cell Physiol 209(3):967–976. https://doi.org/10.1002/jcp.20804

    Article  CAS  PubMed  Google Scholar 

  160. Li G, Xu Z, Hou L, Li X, Li X, Yuan W, Polat M, Chang S (2016) Differential effects of bisphenol A diglicydyl ether on bone quality and marrow adiposity in ovary-intact and ovariectomized rats. Am J Physiol Endocrinol Metab 311(6):E922–E927. https://doi.org/10.1152/ajpendo.00267.2016

    Article  PubMed  Google Scholar 

  161. Almeida M, Kim HN, Han L, Zhou D, Thostenson J, Porter RM, Ambrogini E, Manolagas SC, Jilka RL (2020) Increased marrow adipogenesis does not contribute to age-dependent appendicular bone loss in female mice. Aging Cell 19(11):e13247. https://doi.org/10.1111/acel.13247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Keune JA, Wong CP, Branscum AJ, Iwaniec UT, Turner RT (2017) Bone marrow adipose tissue deficiency increases disuse-induced bone loss in male mice. Sci Rep 7:46325. https://doi.org/10.1038/srep46325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81770875); the Post-Doctor Research Project, West China Hospital, Sichuan University (No.19HXBH053); the Health and Family Planning Commission of Sichuan Province (No. 19PJ096); and the 1.3.5 project for discipline of excellence, West China Hospital, Sichuan University (No. 2020HXFH008, No. ZYJC18003).

Author information

Authors and Affiliations

Authors

Contributions

Xijie Yu provided the conception of the manuscript. Jiao Li and Lingyun Lu performed the literature search and drafted the work. Yi Liu revised the manuscript. All authors read and approved the final manuscript.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Lu, L., Liu, Y. et al. Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events. J Mol Med 100, 167–183 (2022). https://doi.org/10.1007/s00109-021-02164-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02164-1

Keywords

Navigation