Skip to main content
Log in

Stem cell therapies for retinal diseases: from bench to bedside

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

As the human retina has no regenerative ability, stem cell interventions represent potential therapies for various blinding retinal diseases. This type of therapy has been extensively studied in the human eyes through decades of preclinical studies. The safety profiles shown in clinical trials thus far have indicated that these strategies should be further explored. There are still challenges with regard to cell source, cell delivery, immuno-related adverse events and long-term maintenance of the therapeutic effects. Retinal stem cell therapy is likely to be most successful with a combination of multiple technologies, such as gene therapy. The purpose of this review is to present a synthetical and systematic coverage of stem cell therapies that target retinal diseases from bench to bedside, intending to appeal to both junior specialists and the broader community of clinical investigators alike. This review will only focus on therapies that have already been studied in clinical trials. This review summarizes key concepts, highlights the main studies in human patients and discusses the current challenges and potential methods to reduce safety concerns while enhancing the therapeutic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH et al (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5:e1221–e1234

    Article  PubMed  Google Scholar 

  2. Foster A, Resnikoff S (2005) The impact of Vision 2020 on global blindness. Eye 19:1133–1135

    Article  CAS  PubMed  Google Scholar 

  3. Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, Takahashi M (2019) Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res 69:38–56

    Article  CAS  PubMed  Google Scholar 

  4. Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng CY, Wong TY (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2:e106–e116

    Article  PubMed  Google Scholar 

  5. Gasparini SJ, Llonch S, Borsch O, Ader M (2019) Transplantation of photoreceptors into the degenerative retina: current state and future perspectives. Prog Retin Eye Res 69:1–37

    Article  CAS  PubMed  Google Scholar 

  6. Kocur I, Resnikoff S (2002) Visual impairment and blindness in Europe and their prevention. Br J Ophthalmol 86:716–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB, Zam A, Zawadzki RJ, Werner JS, Nolta JA (2017) Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res 56:148–165

    Article  CAS  PubMed  Google Scholar 

  8. Brown GC (1999) Vision and quality-of-life. Trans Am Ophthalmol Soc 97:473–511

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bainbridge JWB, Tan MH, Ali RR (2006) Gene therapy progress and prospects: the eye. Gene Ther 13:1191–1197

    Article  CAS  PubMed  Google Scholar 

  10. Ambati J, Fowler BJ (2012) Mechanisms of age-related macular degeneration. Neuron 75:26–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Binder S, Stanzel BV, Krebs I, Glittenberg C (2007) Transplantation of the RPE in AMD. Prog Retin Eye Res 26:516–554

    Article  PubMed  Google Scholar 

  12. Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K, SEVEN-UP Study Group (2013) Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology 120:2292–2299

    Article  PubMed  Google Scholar 

  13. Ehlken C, Jungmann S, Bohringer D et al (2014) Switch of anti-VEGF agents is an option for nonresponders in the treatment of AMD. Eye (Lond) 28:538–545

    Article  CAS  Google Scholar 

  14. Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311:1901–1911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, Takahashi M, Nagiel A, Schwartz SD, Bharti K (2020) Retinal stem cell transplantation: balancing safety and potential. Prog Retin Eye Res 75:100779

    Article  CAS  PubMed  Google Scholar 

  16. Chen M, Luo C, Zhao J, Devarajan G, Xu H (2019) Immune regulation in the aging retina. Prog Retin Eye Res 69:159–172

    Article  CAS  PubMed  Google Scholar 

  17. Streilein JW, Ma N, Wenkel H, Fong Ng T, Zamiri P (2002) Immunobiology and privilege of neuronal retina and pigment epithelium transplants. Vis Res 42:487–495

    Article  PubMed  Google Scholar 

  18. Jones MK, Lu B, Girman S, Wang S (2017) Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 58:1–27

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lipinski DM, Thake M, MacLaren RE (2013) Clinical applications of retinal gene therapy. Prog Retin Eye Res 32:22–47

    Article  CAS  PubMed  Google Scholar 

  20. Nazari H, Zhang L, Zhu D, Chader GJ, Falabella P, Stefanini F, Rowland T, Clegg DO, Kashani AH, Hinton DR et al (2015) Stem cell based therapies for age-related macular degeneration: The promises and the challenges. Prog Retin Eye Res 48:1–39

    Article  CAS  PubMed  Google Scholar 

  21. Assawachananont J, Mandai M, Okamoto S, Yamada C, Eiraku M, Yonemura S, Sasai Y, Takahashi M (2014) Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports 2:662–674

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785

    Article  CAS  PubMed  Google Scholar 

  23. Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, Peters A, Park TS, Zambidis ET, Meyer JS et al (2014) Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 5:1–31

    Google Scholar 

  24. Mehat MS, Sundaram V, Ripamonti C, Robson AG, Smith AJ, Borooah S, Robinson M, Rosenthal AN, Innes W, Weleber RG et al (2018) Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology 125:1765–1775

    Article  PubMed  Google Scholar 

  25. Gagliardi G, Ben M’Barek K, Goureau O (2019) Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: a pluripotent stem cell-based approach. Prog Retin Eye Res:1–25. https://doi.org/10.1016/j.preteyeres.2019.03.001

  26. Waldron PV, Di Marco F, Kruczek K et al (2018) Transplanted donor- or stem cell-derived cone photoreceptors can both integrate and undergo material transfer in an environment-dependent manner. Stem Cell Reports 10:406–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barber AC, Hippert C, Duran Y, West EL, Bainbridge JWB, Warre-Cornish K, Luhmann UFO, Lakowski J, Sowden JC, Ali RR et al (2013) Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci 110:354–359

    Article  CAS  PubMed  Google Scholar 

  28. Dias MF, Joo K, Kemp JA, Fialho SL, da Silva Cunha A Jr, Woo SJ, Kwon YJ (2018) Molecular genetics and emerging therapies for retinitis pigmentosa: basic research and clinical perspectives. Prog Retin Eye Res 63:107–131

    Article  CAS  PubMed  Google Scholar 

  29. Foltz LP, Clegg DO (2019) Patient-derived induced pluripotent stem cells for modelling genetic retinal dystrophies. Prog Retin Eye Res 68:54–66

    Article  CAS  PubMed  Google Scholar 

  30. Zarbin M, Sugino I, Townes-Anderson E (2019) Concise review: update on retinal pigment epithelium transplantation for age-related macular degeneration. Stem Cells Transl Med 8:466–477

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schwartz SD, Anglade E, Lanza R (2015) Stem cells in age-related macular degeneration and Stargardt’s macular dystrophy – Authors’ reply. Lancet 386:30

    Article  PubMed  Google Scholar 

  32. Da Cruz L, Fynes K, Georgiadis O et al (2018) Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 36:1–10

    Article  CAS  Google Scholar 

  33. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y et al (2017) Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med 376:1038–1046

    Article  CAS  PubMed  Google Scholar 

  34. Sparrrow JR, Hicks D, Hamel CP (2010) The retinal pigment epithelium in health and disease. Curr Mol Med 10:802–823

    Article  CAS  Google Scholar 

  35. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  36. McGill TJ, Osborne L, Lu B et al (2019) Subretinal transplantation of human central nervous system stem cells stimulates controlled proliferation of endogenous retinal pigment epithelium. Transl Vis Sci Technol 8:43

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li L, Turner JE (1988) Inherited retinal dystrophy in the RCS rat: prevention of photoreceptor degeneration by pigment epithelial cell transplantation. Exp Eye Res 47:911–917

    Article  CAS  PubMed  Google Scholar 

  38. Lund RD, Kwan ASL, Keegan DJ, et al (2001) Cell transplantation as a treatment for retinal disease

  39. Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, Lanza R, Lund R (2009) Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 27:2126–2135

    Article  CAS  PubMed  Google Scholar 

  40. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Girman S, Bischoff N, Sauvé Y, Lanza R (2006) Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8:189–199

    Article  CAS  PubMed  Google Scholar 

  41. Algvere PV, Gouras P, Kopp ED (1999) Long-term outcome of RPE allografts in non-immunosuppressed patients with AMD. Eur J Ophthalmol 9:217–230

    Article  CAS  PubMed  Google Scholar 

  42. Algvere PV, Berglin L, Gouras P, Sheng Y (1994) Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefes Arch Clin Exp Ophthalmol 232:707–716

    Article  CAS  PubMed  Google Scholar 

  43. Algvere PV, Berglin L, Gouras P, Sheng Y, Kopp ED (1997) Transplantation of RPE in age-related macular degeneration: observations in disciform lesions and dry RPE atrophy. Graefes Arch Clin Exp Ophthalmol 235:149–158

    Article  CAS  PubMed  Google Scholar 

  44. De Juan E, Loewenstein A, Bressler NM, Alexander J (1998) Translocation of the retina for management of subfoveal choroidal neovascularization II: a preliminary report in humans. Am J Ophthalmol 125:635–646

    Article  PubMed  Google Scholar 

  45. Machemer R, Steinhorst UH (1993) Retinal separation, retinotomy, and macular relocation: II. A surgical approach for age-related macular degeneration? Graefes Arch Clin Exp Ophthalmol 231:635–641

    Article  CAS  PubMed  Google Scholar 

  46. Heussen FMA, Fawzy NF, Joeres S, Lux A, Maaijwee K, Meurs JC, Kirchhof B, Joussen AM (2008) Autologous translocation of the choroid and RPE in age-related macular degeneration: 1-year follow-up in 30 patients and recommendations for patient selection. Eye 22:799–807

    Article  CAS  PubMed  Google Scholar 

  47. Falkner-Radler CI, Krebs I, Glittenberg C, Povazay B, Drexler W, Graf A, Binder S (2011) Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. Br J Ophthalmol 95:370–375

    Article  PubMed  Google Scholar 

  48. Stanga PE, Fitzke FW, Halfyard AS et al (2001) Retinal pigment epithelium translocation and central visual function in age related macular degeneration: preliminary results. Int Ophthalmol 23:297–307

    Article  CAS  PubMed  Google Scholar 

  49. Stanga PE, Fitzke FW, Halfyard AS et al (2002) Retinal pigment epithelium translocation after choroidal neovascular membrane removal in age-related macular degeneration. Ophthalmology 109:1492–1498

    Article  PubMed  Google Scholar 

  50. Van Meurs JC, Van Den Biesen PR (2003) Autologous retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: short-term follow-up. Am J Ophthalmol 136:688–695

    Article  PubMed  Google Scholar 

  51. Chen FK, Patel PJ, Uppal GS, Tufail A, Coffey PJ, da Cruz L (2010) Long-term outcomes following full macular translocation surgery in neovascular age-related macular degeneration. Br J Ophthalmol 94:1337–1343

    Article  PubMed  Google Scholar 

  52. Van Zeeburg EJT, Maaijwee KJM, Missotten TOAR et al (2012) A free retinal pigment epitheliumchoroid graft in patients with exudative age-related macular degeneration: results up to 7 years. Am J Ophthalmol 153:120–127.e2

    Article  PubMed  Google Scholar 

  53. Schwartz SD, Tan G, Hosseini H, Nagiel A (2016) Subretinal transplantation of embryonic stem cell–derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Investig Ophthalmol Vis Sci 57:ORSFc1–ORSFc9

    Article  CAS  Google Scholar 

  54. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64

    Article  CAS  PubMed  Google Scholar 

  55. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R et al (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271

    Article  CAS  PubMed  Google Scholar 

  56. Li N, Li X, Yuan J (2009) Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion. Graefes Arch Clin Exp Ophthalmol 247:503–514

    Article  PubMed  Google Scholar 

  57. Cerman E, Akkoc T, Eraslan M et al (2016) Retinal electrophysiological effects of intravitreal bone marrow derived mesenchymal stem cells in streptozotocin induced diabetic rats. PLoS One 11:e0156495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bull ND, Irvine KA, Franklin RJM, Martin KR (2009) Transplanted oligodendrocyte precursor cells reduce neurodegeneration in a model of glaucoma. Investig Ophthalmol Vis Sci 50:4244–4253

    Article  Google Scholar 

  59. Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR (2010) Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Investig Ophthalmol Vis Sci 51:2051–2059

    Article  Google Scholar 

  60. Arnhold S, Absenger Y, Klein H, Addicks K, Schraermeyer U (2007) Transplantation of bone marrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse. Graefes Arch Clin Exp Ophthalmol 245:414–422

    Article  CAS  PubMed  Google Scholar 

  61. Park SS, Bauer G, Abedi M, Pontow S, Panorgias A, Jonnal R, Zawadzki RJ, Werner JS, Nolta J (2015) Intravitreal autologous bone marrow cd34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Investig Ophthalmol Vis Sci 56:81–89

    Article  CAS  Google Scholar 

  62. Kuppermann BD, Boyer DS, Mills B et al (2018) Safety and activity of a single, intravitreal injection of human retinal progenitor cells (jCell) for treatment of retinitis pigmentosa (RP). Invest Ophthalmol Vis Sci 59:2987

    Article  Google Scholar 

  63. Ho AC, Chang TS, Samuel M, Williamson P, Willenbucher RF, Malone T (2017) Experience with a subretinal cell-based therapy in patients with geographic atrophy secondary to age-related macular degeneration. Am J Ophthalmol 179:67–80

    Article  PubMed  Google Scholar 

  64. Bull ND, Martin KR (2011) Concise review: Toward stem cell-based therapies for retinal neurodegenerative diseases. Stem Cells 29:1170–1175

    Article  PubMed  Google Scholar 

  65. Rao RC, Dedania VS, Johnson MW (2017) Stem cells for retinal disease: a perspective on the promise and perils. Am J Ophthalmol 179:32–38

    Article  PubMed  Google Scholar 

  66. Osakada F, Ikeda H, Sasai Y, Takahashi M (2009) Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc 4:811–824

    Article  CAS  PubMed  Google Scholar 

  67. Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99:9864–9869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sperger JM, Chen X, Draper JS, Antosiewicz JE, Chon CH, Jones SB, Brooks JD, Andrews PW, Brown PO, Thomson JA (2003) Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci 100:13350–13355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U (2004) Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Investig Ophthalmol Vis Sci 45:4251–4255

    Article  Google Scholar 

  70. Peterson SE, Loring JF (2014) Genomic instability in pluripotent stem cells: Implications for clinical applications. J Biol Chem 289:4578–4584

    Article  CAS  PubMed  Google Scholar 

  71. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720

    Article  CAS  PubMed  Google Scholar 

  72. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 63:153

    Google Scholar 

  73. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  74. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science (80-) 318:1917–1920

    Article  CAS  Google Scholar 

  75. Woltjen K, Paca A, Mohseni P et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:581–384

    Article  CAS  Google Scholar 

  77. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells using synthetic modified mRNA. Cell Stem Cell 7:618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kamao H, Mandai M, Okamoto S et al (2014) Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports 2:52–63

    Article  CAS  Google Scholar 

  79. Kokkinaki M, Sahibzada N, Golestaneh N (2011) Human iPS-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized VEGF secretion and gene expression pattern similar to native RPE. Stem Cells 29:825–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Phillips MJ, Wallace KA, Dickerson SJ, Miller MJ, Verhoeven AD, Martin JM, Wright LS, Shen W, Capowski EE, Percin EF et al (2012) Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest Ophthalmol Vis Sci 53:2007–2019

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mandai M, Fujii M, Hashiguchi T, Sunagawa GA, Ito SI, Sun J, Kaneko J, Sho J, Yamada C, Takahashi M (2017) iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Reports 8:69–83

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tu HY, Watanabe T, Shirai H, Yamasaki S, Kinoshita M, Matsushita K, Hashiguchi T, Onoe H, Matsuyama T, Kuwahara A et al (2019) Medium- to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration. EBioMedicine 39:562–574

    Article  PubMed  Google Scholar 

  83. Takagi S, Mandai M, Gocho K et al (2019) Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration. Ophthalmol Retina:1–10. https://doi.org/10.1016/j.oret.2019.04.021

  84. Borooah S, Phillips MJ, Bilican B, Wright AF, Wilmut I, Chandran S, Gamm D, Dhillon B (2013) Using human induced pluripotent stem cells to treat retinal disease. Prog Retin Eye Res 37:163–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bassuk AG, Zheng A, Li Y, Tsang SH, Mahajan VB (2016) Precision medicine: genetic repair of retinitis pigmentosa in patient-derived stem cells. Sci Rep 6:1–6

    Article  CAS  Google Scholar 

  86. Jin ZB, Okamoto S, Mandai M, Takahashi M (2009) Induced pluripotent stem cells for retinal degenerative diseases: a new perspective on the challenges. J Genet 88:417–424

    Article  PubMed  Google Scholar 

  87. Kaneko S, Yamanaka S (2013) To be immunogenic, or not to be: that’s the iPSC question. Cell Stem Cell 12:385–386

    Article  CAS  PubMed  Google Scholar 

  88. Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient hla types. Cell Stem Cell 11:147–152

    Article  CAS  PubMed  Google Scholar 

  89. McGill TJ, Stoddard J, Renner AM et al (2018) Allogeneic iPSC-derived RPE cell graft failure following transplantation into the subretinal space in nonhuman primates. Investig Ophthalmol Vis Sci 59:1374–1383

    Article  CAS  Google Scholar 

  90. Sugita S, Iwasaki Y, Makabe K, Kamao H, Mandai M, Shiina T, Ogasawara K, Hirami Y, Kurimoto Y, Takahashi M (2016) Successful transplantation of retinal pigment epithelial cells from MHC homozygote iPSCs in MHC-matched models. Stem Cell Reports 7:635–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S, Takahashi M (2016) Lack of T cell response to iPSC-derived retinal pigment epithelial cells from HLA homozygous donors. Stem Cell Reports 7:619–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Miyagishima KJ, Qin W, Corneo B et al (2016) In pursuit of authenticity: induced pluripotent stem cell-derived retinal pigment epithelium for clinical applications. Stem Cells Transl Med:1562–1574. https://doi.org/10.5966/sctm.2016-0037

  93. Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–216

    Article  CAS  PubMed  Google Scholar 

  94. Gore A, Li Z, Fung H-L, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Muller-Sieburg CE, Cho RH, Thoman M et al (2002) Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100:1302–1309

    Article  CAS  PubMed  Google Scholar 

  96. Park SS (2016) Cell therapy applications for retinal vascular diseases: diabetic retinopathy and retinal vein occlusion. Invest Ophthalmol Vis Sci 57:ORSFj1–ORSFj10

    Article  CAS  PubMed  Google Scholar 

  97. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova G (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  CAS  PubMed  Google Scholar 

  98. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  99. da Silva ML (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  CAS  Google Scholar 

  100. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  101. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  CAS  PubMed  Google Scholar 

  102. Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2:8

    Article  CAS  Google Scholar 

  103. Wang S, Lu B, Girman S, Duan J, McFarland T, Zhang QS, Grompe M, Adamus G, Appukuttan B, Lund R (2010) Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology. PLoS One 5:1–9

    Article  Google Scholar 

  104. Inoue Y, Iriyama A, Ueno S, Takahashi H, Kondo M, Tamaki Y, Araie M, Yanagi Y (2007) Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res 85:234–241

    Article  CAS  PubMed  Google Scholar 

  105. Li W, Zhou H, Abujarour R, Zhu S, Joo JY, Lin T, Hao E, Schöler HR, Hayek A, Ding S (2009) Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27:2992–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25:829–848

    Article  PubMed  Google Scholar 

  107. Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13:392–402

    Article  CAS  PubMed  Google Scholar 

  108. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  109. Arnhold S, Heiduschka P, Klein H, Absenger Y, Basnaoglu S, Kreppel F, Henke-Fahle S, Kochanek S, Bartz-Schmidt KU, Addicks K et al (2006) Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats. Invest Ophthalmol Vis Sci 47:4121–4129

    Article  PubMed  Google Scholar 

  110. Hu Y, Liang J, Cui H, Wang X, Rong H, Shao B, Cui H (2013) Wharton’s jelly mesenchymal stem cells differentiate into retinal progenitor cells. Neural Regen Res 8:1783–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Berenson RJ, Andrews RG, Bensinger WI, Kalamasz D, Knitter G, Buckner CD, Bernstein ID (1988) Antigen CD34+ marrow cells engraft lethally irradiated baboons. J Clin Invest 81:951–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Otani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, Banin E, Heckenlively J, Friedlander M (2004) Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest 114:765–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moisseiev E, Smit-McBride Z, Oltjen S, Zhang P, Zawadzki RJ, Motta M, Murphy CJ, Cary W, Annett G, Nolta JA et al (2016) Intravitreal administration of human bone marrow CD34+ stem cells in a murine model of retinal degeneration. Invest Ophthalmol Vis Sci 57:4125–4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Siqueira R (2011) Stem cell therapy for retinal diseases: update. Stem Cell Res Ther 2:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Goodell MA, Nguyen H, Shroyer N (2015) Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nat Rev Mol Cell Biol 16:299–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9:702–712

    Article  CAS  PubMed  Google Scholar 

  117. Caballero S, Sengupta N, Afzal A, Chang KH, Li Calzi S, Guberski DL, Kern TS, Grant MB (2007) Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes 56:960–967

    Article  CAS  PubMed  Google Scholar 

  118. McGill TJ, Cottam B, Lu B et al (2012) Transplantation of human central nervous system stem cells - neuroprotection in retinal degeneration. Eur J Neurosci 35:468–477

    Article  PubMed  Google Scholar 

  119. Zarbin M (2016) Cell-based therapy for degenerative retinal disease. Trends Mol Med 22:115–134

    Article  PubMed  Google Scholar 

  120. Seaberg RM, Van Der Kooy D (2003) Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci 26:125–131

    Article  CAS  PubMed  Google Scholar 

  121. Radtke ND, Aramant RB, Seiler M, Petry HM (1999) Preliminary report: indications of improved visual function after retinal sheet transplantation in retinitis pigmentosa patients. Am J Ophthalmol 128:384–387

    Article  CAS  PubMed  Google Scholar 

  122. Das T, del Cerro M, Jalali S, Rao VS, Gullapalli VK, Little C, Loreto DAD, Sharma S, Sreedharan A, del Cerro C et al (1999) The transplantation of human fetal neuroretinal cells in advanced retinitis pigmentosa patients: results of a long-term safety study. Exp Neurol 157:58–68

    Article  CAS  PubMed  Google Scholar 

  123. Koh S, Kim N, Yin HH, Harris IR, Dejneka NS, Eroglu C (2015) Human umbilical tissue-derived cells promote synapse formation and neurite outgrowth via thrombospondin family proteins. J Neurosci 35:15649–15665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cao J, Murat C, An W, Yao X, Lee J, Santulli-Marotto S, Harris IR, Inana G (2016) Human umbilical tissue-derived cells rescue retinal pigment epithelium dysfunction in retinal degeneration. Stem Cells 34:367–379

    Article  CAS  PubMed  Google Scholar 

  125. Lund RD, Wang S, Lu B, Girman S, Holmes T, Sauvé Y, Messina DJ, Harris IR, Kihm AJ, Harmon AM et al (2007) Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells 25:602–611

    Article  CAS  PubMed  Google Scholar 

  126. Luo J, Baranov P, Patel S, Ouyang H, Quach J, Wu F, Qiu A, Luo H, Hicks C, Zeng J et al (2014) Human retinal progenitor cell transplantation preserves vision. J Biol Chem 289:6362–6371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Klassen H, Kiilgaard JF, Zahir T, Ziaeian B, Kirov I, Scherfig E, Warfvinge K, Young MJ (2007) Progenitor cells from the porcine neural retina express photoreceptor markers after transplantation to the subretinal space of allorecipients. Stem Cells 25:1222–1230

    Article  CAS  PubMed  Google Scholar 

  128. Singh MS, MacLaren RE (2018) Stem cell treatment for age-related macular degeneration: the challenges. Invest Ophthalmol Vis Sci 59:AMD78–AMD82

    Article  PubMed  Google Scholar 

  129. Jonas JB, Witzens-harig M, Arseniev L, Ho AD (2010) Intravitreal autologous bone-marrow-derived mononuclear cell transplantation. Acta Ophthalmol 88:e131–e132

    Article  PubMed  Google Scholar 

  130. Siqueira RC, Messias A, Gurgel VP, Simões BP, Scott IU, Jorge R (2015) Improvement of ischaemic macular oedema after intravitreal injection of autologous bone marrow-derived haematopoietic stem cells. Acta Ophthalmol 93:e174–e176

    Article  PubMed  Google Scholar 

  131. Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R (2011) Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina 31:1207–1214

    Article  PubMed  Google Scholar 

  132. Siqueira RC, Messias A, Voltarelli JC, Messias K, Arcieri RS, Jorge R (2013) Resolution of macular oedema associated with retinitis pigmentosa after intravitreal use of autologous BM-derived hematopoietic stem cell transplantation. Bone Marrow Transplant 48:612–613

    Article  CAS  PubMed  Google Scholar 

  133. Cotrim CC, Toscano L, Messias A, Jorge R, Siqueira R (2017) Intravitreal use of bone marrow mononuclear fraction containing CD34(+) stem cells in patients with atrophic age-related macular degeneration. Clin Ophthalmol 11:931–938

    Article  PubMed  PubMed Central  Google Scholar 

  134. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP, Davis JL, Heilwell G, Spirn M et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet 385:509–516

    Article  PubMed  Google Scholar 

  135. Kashani AH, Mitra D, Thomas BB et al (2018) A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med 10:1–11

    Article  CAS  Google Scholar 

  136. Weiss JN, Benes SC, Levy S (2016) Stem Cell Ophthalmology Treatment Study (SCOTS): improvement in serpiginous choroidopathy following autologous bone marrow derived stem cell treatment. Neural Regen Res 11:1512–1516

    Article  PubMed  PubMed Central  Google Scholar 

  137. Song WK, Park KM, Kim HJ, Lee JH, Choi J, Chong SY, Shim SH, del Priore LV, Lanza R (2015) Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Reports 4:860–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Weiss JN, Levy S, Malkin A (2015) Stem cell ophthalmology treatment study (SCOTS) for retinal and optic nerve diseases: a preliminary report. Neural Regen Res 10:1–41

    Google Scholar 

  139. Weiss JN, Levy S, Benes SC (2015) Stem cell ophthalmology treatment study (SCOTS) for retinal and optic nerve diseases: a case report of improvement in relapsing auto-immune optic neuropathy. Neural Regen Res 10:1507–1515

    Article  PubMed  PubMed Central  Google Scholar 

  140. Weiss JN, Levy S, Benes SC (2016) Stem cell ophthalmology treatment study (SCOTS): bone marrow-derived stem cells in the treatment of Leber’s hereditary optic neuropathy. Neural Regen Res 11:1685–1694

    Article  PubMed  PubMed Central  Google Scholar 

  141. Weiss JN, Levy S, Benes SC (2017) Stem cell ophthalmology treatment study: bone marrow derived stem cells in the treatment of non-arteritic ischemic optic neuropathy (NAION). Stem Cell Investig 4:1–11

    Article  Google Scholar 

  142. Khine KT, Albini TA, Lee RK (2020) Chronic retinal detachment and neovascular glaucoma after intravitreal stem cell injection for Usher Syndrome. Am J Ophthalmol Case Rep 18:100647

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE II, Parrott MB, Rosenfeld PJ, Flynn HW Jr, Goldberg JL (2017) Vision loss after intravitreal injection of autologous “stem Cells” for AMD. N Engl J Med 376:1047–1053

    Article  PubMed  PubMed Central  Google Scholar 

  144. Saraf SS, Cunningham MA, Kuriyan AE, Read SP, Rosenfeld PJ, Flynn HW Jr, Albini TA (2017) Bilateral retinal detachments after intravitreal injection of adipose-derived “Stem Cells” in a patient with exudative macular degeneration. Ophthalmic Surg Lasers Imaging Retina 48:772–775

    Article  PubMed  Google Scholar 

  145. Heller JP, Martin KR (2014) Enhancing RPE cell-based therapy outcomes for AMD: the role of Bruch’s membrane. Transl Vis Sci Technol 3:4

    Article  Google Scholar 

  146. Marc RE, Jones BW, Watt CB, Strettoi E (2003) Neural remodeling in retinal degeneration. Prog Retin Eye Res 22:607–655

    Article  PubMed  Google Scholar 

  147. Bird AC, Phillips RL, Hageman GS (2014) Geographic atrophy: a histopathological assessment. JAMA Ophthalmol 132:338–345

    Article  PubMed  PubMed Central  Google Scholar 

  148. Tsai Y, Lu B, Bakondi B, Girman S, Sahabian A, Sareen D, Svendsen CN, Wang S (2015) Human iPSC-derived neural progenitors preserve vision in an AMD-like model. Stem Cells 33:2537–2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33

    Article  PubMed  Google Scholar 

  150. Sun K, Cai H, Tezel TH, Paik D, Gaillard ER, del Priore L (2007) Bruch’s membrane aging decreases phagocytosis of outer segments by retinal pigment epithelium. Mol Vis 13:2310–2319

    PubMed  Google Scholar 

  151. Gullapalli VK, Sugino IK, Van Patten Y et al (2005) Impaired RPE survival on aged submacular human Bruch’s membrane. Exp Eye Res 80:235–248

    Article  CAS  PubMed  Google Scholar 

  152. Del Priore LV, Tezel TH (1998) Reattachment rate of human retinal pigment epithelium to layers of human Bruch’s membrane. Arch Ophthalmol 116:335–341

    Article  PubMed  Google Scholar 

  153. Diniz B, Thomas P, Thomas B, Ribeiro R, Hu Y, Brant R, Ahuja A, Zhu D, Liu L, Koss M et al (2013) Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Investig Ophthalmol Vis Sci 54:5087–5096

    Article  Google Scholar 

  154. Afshari FT, Fawcett JW (2009) Improving RPE adhesion to Bruch’ s membrane. Eye (Lond) 23:1890–1893

    Article  CAS  Google Scholar 

  155. Shirley Ding SL, Leow SN, Munisvaradass R, Koh EH, Bastion MLC, Then KY, Kumar S, Mok PL (2016) Revisiting the role of erythropoietin for treatment of ocular disorders. Eye (Lond) 30:1293–1309

    Article  CAS  Google Scholar 

  156. Guan Y, Cui L, Qu Z, Lu L, Wang F, Wu Y, Zhang J, Gao F, Tian H, Xu L et al (2013) Subretinal transplantation of rat MSCs and erythropoietin gene modified rat MSCs for protecting and rescuing degenerative retina in rats. Curr Mol Med 13:1419–1431

    Article  CAS  PubMed  Google Scholar 

  157. Busch S, Kannt A, Kolibabka M, Schlotterer A, Wang Q, Lin J, Feng Y, Hoffmann S, Gretz N, Hammes HP (2014) Systemic treatment with erythropoietin protects the neurovascular unit in a rat model of retinal neurodegeneration. PLoS One 9:e102013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Liu N, Tian J, Cheng J, Zhang J (2013) Effect of erythropoietin on the migration of bone marrow-derived mesenchymal stem cells to the acute kidney injury microenvironment. Exp Cell Res 319:2019–2027

    Article  CAS  PubMed  Google Scholar 

  159. Qu L, Gao L, Xu H, Duan P, Zeng Y, Liu Y, Yin ZQ (2017) Combined transplantation of human mesenchymal stem cells and human retinal progenitor cells into the subretinal space of RCS rats. Sci Rep 7:1–15

    Article  CAS  Google Scholar 

  160. Bakondi B, Girman S, Lu B, Wang S (2017) Multimodal delivery of isogenic mesenchymal stem cells yields synergistic protection from retinal degeneration and vision loss. Stem Cells Transl Med 6:444–457

    Article  CAS  PubMed  Google Scholar 

  161. Thomas BB, Zhu D, Zhang L, Thomas PB, Hu Y, Nazari H, Stefanini F, Falabella P, Clegg DO, Hinton DR et al (2016) Survival and functionality of hESC-derived retinal pigment epithelium cells cultured as a monolayer on polymer substrates transplanted in RCS rats. Invest Ophthalmol Vis Sci 57:2877–2887

    Article  CAS  PubMed  Google Scholar 

  162. Fernandes RAB, Stefanini FR, Falabella P, Koss MJ, Wells T, Diniz B, Ribeiro R, Schor P, Maia M, Penha FM et al (2017) Development of a new tissue injector for subretinal transplantation of human embryonic stem cell derived retinal pigmented epithelium. Int J Retina Vitreous 3:41

    Article  PubMed  PubMed Central  Google Scholar 

  163. Koss MJ, Falabella P, Stefanini FR et al (2016) Subretinal implantation of a monolayer of human embryonic stem cell-derived retinal pigment epithelium: a feasibility and safety study in Yucatán minipigs. Graefes Arch Clin Exp Ophthalmol 254:1553–1565

    Article  CAS  PubMed  Google Scholar 

  164. Tezel TH, Del Priore LV, Kaplan HJ (2004) Reengineering of aged Bruch’s membrane to enhance retinal pigment epithelium repopulation. Investig Ophthalmol Vis Sci 45:3337–3348

    Article  Google Scholar 

  165. Amer MH, White LJ, Shakesheff KM (2015) The effect of injection using narrow-bore needles on mammalian cells: administration and formulation considerations for cell therapies. J Pharm Pharmacol 67:640–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tzameret A, Sher I, Belkin M, Treves AJ, Meir A, Nagler A, Levkovitch-Verbin H, Barshack I, Rosner M, Rotenstreich Y (2014) Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal dystrophy. Exp Eye Res 118:135–144

    Article  CAS  PubMed  Google Scholar 

  167. Apatoff MBL, Sengillo JD, White EC, Bakhoum MF, Bassuk AG, Mahajan VB, Tsang SH (2018) Autologous stem cell therapy for inherited and acquired retinal disease. Regen Med 13:89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Boudreault K, Justus S, Lee W, Mahajan VB, Tsang SH (2016) Complication of autologous stem cell transplantation in retinitis pigmentosa. JAMA Ophthalmol 134:711–712

    Article  PubMed  Google Scholar 

  169. Ge J, Guo L, Wang S, Zhang Y, Cai T, Zhao RCH, Wu Y (2014) The size of mesenchymal stem cells is a significant cause of vascular obstructions and stroke. Stem Cell Rev 10:295–303

    Article  CAS  Google Scholar 

  170. Schwartz SD, Hubschman J-P, Heilwell G, Pan CK, Lanza R (2012) Embryonic stem-cell-derived retinal pigment epithelial cells for macular degeneration – Authors’ reply. Lancet 379:2050–2051

    Article  Google Scholar 

  171. Stern JH, Tian Y, Funderburgh J, Pellegrini G, Zhang K, Goldberg JL, Ali RR, Young M, Xie Y, Temple S (2018) Regenerating eye tissues to preserve and restore vision. Cell Stem Cell 22:834–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–58

    Article  CAS  PubMed  Google Scholar 

  173. Singh MS, Balmer J, Barnard AR, Aslam SA, Moralli D, Green CM, Barnea-Cramer A, Duncan I, MacLaren RE (2016) Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat Commun 7:1–5

    CAS  Google Scholar 

  174. Pearson RA, Gonzalez-Cordero A, West EL, Ribeiro JR, Aghaizu N, Goh D, Sampson RD, Georgiadis A, Waldron PV, Duran Y et al (2016) Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun 7:1–15

    Google Scholar 

  175. Santos-Ferreira T, Llonch S, Borsch O, Postel K, Haas J, Ader M (2016) Retinal transplantation of photoreceptors results in donor-host cytoplasmic exchange. Nat Commun 7:13028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mead B, Hill LJ, Blanch RJ, Ward K, Logan A, Berry M, Leadbeater W, Scheven BA (2016) Mesenchymal stromal cell-mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotherapy 18:487–496

    Article  CAS  PubMed  Google Scholar 

  177. Gill KP, Hewitt AW, Davidson KC, Pébay A, Wong RCB (2014) Methods of retinal ganglion cell differentiation from pluripotent stem cells. Transl Vis Sci Technol 3:7

    Article  PubMed  PubMed Central  Google Scholar 

  178. Teotia P, Van Hook MJ, Fischer D, Ahmad I (2019) Human retinal ganglion cell axon regeneration by recapitulating developmental mechanisms: effects of recruitment of the mTOR pathway. Development 146:dev178012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor James Bainbridge from University College London for the helpful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. did the literature search, data analysis and wrote the paper.

Corresponding author

Correspondence to Yuening Shen.

Ethics declarations

Conflicts of interest

The author declares that he/she has no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 102 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y. Stem cell therapies for retinal diseases: from bench to bedside. J Mol Med 98, 1347–1368 (2020). https://doi.org/10.1007/s00109-020-01960-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01960-5

Keywords

Navigation