Skip to main content

Advertisement

Log in

The therapeutic potential of Aurora kinases targeting in glioblastoma: from preclinical research to translational oncology

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Glioblastoma is the most common aggressive primary brain tumor. Standard care includes maximal safe surgical resection, radiation, and chemotherapy with temozolomide. However, the impact of this therapeutic approach on patient survival is disappointing and poor outcomes are frequently observed. Therefore, new therapeutic targets are needed to treat this potentially deadly tumor. Aurora kinases are one of today’s most sought-after classes of therapeutic targets to glioblastoma therapy. They are a family of proteins composed of three members: Aurora-A, Aurora-B, and Aurora-C that play different roles in the cell division through regulation of chromosome segregation. Deregulation of these genes has been reported in glioblastoma and a progressive number of studies have shown that inhibition of these proteins could be a promising strategy for the treatment of this tumor. This review discusses the preclinical and early clinical findings on the potential use of the Aurora kinases as new targets for the treatment of glioblastoma.

Key messages

  • GBM is a very aggressive tumor with limited therapeutic options.

  • Aurora kinases are a family of serine/threonine kinases implicated in GBM pathology.

  • Aurora kinases are critical for glioblastoma cell growth, apoptosis, and chemoresistance.

  • Inhibition of Aurora kinases has a synergistic or sensitizing effect with chemotherapy drugs, radiotherapy, or with other targeted molecules in GBM.

  • Several Aurora kinase inhibitors are currently in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
 Fig. 3

Similar content being viewed by others

References

  1. Fields RD, Stevens-Graham B (2002) Neuroscience: new insights into neuron-glia communication. Science 298(80):556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  4. Filbin MG, Tirosh I, Hovestadt V et al (2018) Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360(80):331–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suvà ML, Rheinbay E, Gillespie SM et al (2014) Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157:580–594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Neftel C, Laffy J, Filbin MG et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178:835–849.e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

  8. Aldape K, Zadeh G, Mansouri S et al (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:829–848

  9. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

  10. Wang Q, Hu B, Hu X et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32:42–56.e6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(80):1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kanu OO, Mehta A, Di C et al (2009) Glioblastoma multiforme: a review of therapeutic targets. Expert Opin Ther Targets 13:701–718

    Article  CAS  PubMed  Google Scholar 

  13. Schwartzentruber J, Korshunov A, Liu X-Y et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231

    Article  CAS  PubMed  Google Scholar 

  14. Kallappagoudar S, Yadav RK, Lowe BR, Partridge JF (2015) Histone H3 mutations—a special role for H3.3 in tumorigenesis? Chromosoma 124:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  CAS  PubMed  Google Scholar 

  16. Parada LF, Dirks PB, Wechsler-Reya RJ (2017) Brain tumor stem cells remain in play. J Clin Oncol 35:2428–2431

  17. Das KK, Kumar R (2017) Pediatric glioblastoma. In: De Vleeschouwer S(ed) Glioblastoma [Internet]. Codon Publications, Brisbane, Chapter 15. Available from https://doi.org/10.15586/codon.glioblastoma.2017.ch15

  18. O’Reilly SM, Newlands ES, Brampton M et al (1993) Temozolomide: a new oral cytotoxic chemotherapeutic agent with promising activity against primary brain tumours. Eur J Cancer 29:940–942

    Article  Google Scholar 

  19. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  20. Ostrom QT, Gittleman H, Xu J et al (2016) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro-Oncology 18:v1–v75

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shergalis A, Bankhead A, Luesakul U et al (2018) Current challenges and opportunities in treating glioblastoma. Pharmacol Rev 70:412–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Montembault E, Prigent C (2005) Aurora kinases: therapeutic potential. Drugs Future 30:29

    Article  CAS  Google Scholar 

  23. Gautschi O, Heighway J, Mack PC et al (2008) Aurora kinases as anticancer drug targets. Clin Cancer Res 14:1639–1648

    Article  CAS  PubMed  Google Scholar 

  24. Mountzios G, Terpos E, Dimopoulos M-A (2008) Aurora kinases as targets for cancer therapy. Cancer Treat Rev 34:175–182

    Article  CAS  PubMed  Google Scholar 

  25. Tang A, Gao K, Chu L et al (2017) Aurora kinases: novel therapy targets in cancers. Oncotarget 8:23937–23954

    PubMed  PubMed Central  Google Scholar 

  26. Chan CSM, Botstein D (1993) Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135:677–691

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Glover DM, Leibowitz MH, McLean DA, Parry H (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81:95–105

    Article  CAS  PubMed  Google Scholar 

  28. Carmena M, Earnshaw WC (2003) The cellular geography of Aurora kinases. Nat Rev Mol Cell Biol 4:842–854

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt M, Bastians H (2007) Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist Updat 10:162–181

    Article  CAS  PubMed  Google Scholar 

  30. Fu J, Bian M, Jiang Q, Zhang C (2007) Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5:1–10

    Article  CAS  PubMed  Google Scholar 

  31. Kimura M, Kotani S, Hattori T et al (1997) Cell cycle-dependent expression and spindle pole localization of a novel human protein kinase, Aik, related to Aurora of Drosophila and yeast Ipl1. J Biol Chem 272:13766–13771

    Article  CAS  PubMed  Google Scholar 

  32. Bischoff JR (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17:3052–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20:189–193

    Article  CAS  PubMed  Google Scholar 

  34. Zhang D, Hirota T, Marumoto T et al (2004) Cre-loxP-controlled periodic Aurora-A overexpression induces mitotic abnormalities and hyperplasia in mammary glands of mouse models. Oncogene 23:8720–8730

    Article  CAS  PubMed  Google Scholar 

  35. Anand S, Penrhyn-Lowe S, Venkitaraman AR (2003) AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3:51–62

    Article  CAS  PubMed  Google Scholar 

  36. Adams RR, Carmena M, Earnshaw WC (2001) Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol 11:49–54

    Article  CAS  PubMed  Google Scholar 

  37. Giet R, Prigent C (2001) The non-catalytic domain of the Xenopus laevis auroraA kinase localises the protein to the centrosome

  38. Zeitlin SG, Shelby RD, Sullivan KF (2001) CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 155:1147–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng L, Zhang J, Ahmad S et al (2011) Aurora B regulates formin mDia3 in achieving metaphase chromosome alignment. Dev Cell 20:342–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kelly AE, Funabiki H (2009) Correcting aberrant kinetochore microtubule attachments: an Aurora B-centric view. Curr Opin Cell Biol 21:51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ducat D, Zheng Y (2004) Aurora kinases in spindle assembly and chromosome segregation. Exp Cell Res 301:60–67

    Article  CAS  PubMed  Google Scholar 

  42. Meraldi P, Honda R, Nigg EA (2004) Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev 14:29–36

    Article  CAS  PubMed  Google Scholar 

  43. Tarsuka M, Katayama H, Ota T et al (1998) Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer 58:4811–4816

    Google Scholar 

  44. Terada Y, Tatsuka M, Suzuki F et al (1998) AIM-1: a mammalian midbody-associated protein required for cytokinesis. 17:667–676

  45. Dulyaninova NG, Bresnick AR (2004) The long myosin light chain kinase is differentially phosphorylated during interphase and mitosis. Exp Cell Res 299:303–314

    Article  CAS  PubMed  Google Scholar 

  46. Khan J, Ezan F, Crémet J-Y, Fautrel A, Gilot D, Lambert M, Benaud C, Troadec MB, Prigent C (2011) Overexpression of active Aurora-C kinase results in cell transformation and tumour formation. PLoS One 6:e26512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kimura M, Matsuda Y, Yoshioka T, Okano Y (1999) Cell cycle-dependent expression and centrosome localization of a third human Aurora/Ipl1-related protein kinase, AIK3. J Biol Chem 274:7334–7340

    Article  CAS  PubMed  Google Scholar 

  48. Willems E, Lombard A, Dedobbeleer M et al (2017) The unexpected roles of Aurora A kinase in glioblastoma recurrences. Target Oncol 12:11–18

    Article  PubMed  Google Scholar 

  49. Magnaghi-Jaulin L, Eot-Houllier G, Gallaud E, Giet R (2019) Aurora A protein kinase: to the centrosome and beyond. Biomolecules 9:28

    Article  PubMed Central  CAS  Google Scholar 

  50. Liu H, Kiseleva AA, Golemis EA (2018) Ciliary signalling in cancer. Nat Rev Cancer 18:511–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hsu Y-C, Kao C-Y, Chung Y-F et al (2016) Activation of Aurora A kinase through the FGF1/FGFR signaling axis sustains the stem cell characteristics of glioblastoma cells. Exp Cell Res 344:153–166

    Article  CAS  PubMed  Google Scholar 

  52. Xia Z, Wei P, Zhang H et al (2013) AURKA governs self-renewal capacity in glioma-initiating cells via stabilization/activation of β-catenin/Wnt signaling. Mol Cancer Res 11:1101–1111

    Article  CAS  PubMed  Google Scholar 

  53. Kogiso M, Qi L, Braun FK et al (2018) Concurrent inhibition of neurosphere and monolayer cells of pediatric glioblastoma by Aurora A inhibitor MLN8237 predicted survival extension in PDOX models. Clin Cancer Res 24:2159–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mannino M, Gomez-Roman N, Hochegger H, Chalmers AJ (2014) Differential sensitivity of glioma stem cells to Aurora kinase A inhibitors: implications for stem cell mitosis and centrosome dynamics. Stem Cell Res 13:135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. De Bacco F, D’Ambrosio A, Casanova E et al (2016) MET inhibition overcomes radiation resistance of glioblastoma stem-like cells. EMBO Mol Med 8:550–568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lehman NL, O’Donnell JP, Whiteley LJ et al (2012) Aurora A is differentially expressed in gliomas, is associated with patient survival in glioblastoma and is a potential chemotherapeutic target in gliomas. Cell Cycle 11:489–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cammareri P, Scopelliti A, Todaro M, Eterno V, Francescangeli F, Moyer MP, Agrusa A, Dieli F, Zeuner A, Stassi G (2010) Aurora-A is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cells. Cancer Res 70:4655–4665

    Article  CAS  PubMed  Google Scholar 

  58. Chefetz I, Holmberg JC, Alvero AB et al (2011) Inhibition of Aurora-A kinase induces cell cycle arrest in epithelial ovarian cancer stem cells by affecting NFĸB pathway. Cell Cycle 10:2206–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee C-Y, Andersen RO, Cabernard C et al (2006) Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev 20:3464–3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reynolds B, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hsu YC, Kao CY, Chung YF et al (2012) Ciliogenic RFX transcription factors regulate FGF1 gene promoter. J Cell Biochem 113:2511–2522

    Article  CAS  PubMed  Google Scholar 

  62. Moser JJ, Fritzler MJ, Rattner JB (2014) Ultrastructural characterization of primary cilia in pathologically characterized human glioblastoma multiforme (GBM) tumors. BMC Clin Pathol 14:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Sarkisian MR, Siebzehnrubl D, Hoang-Minh L et al (2014) Detection of primary cilia in human glioblastoma. J Neuro-Oncol 117:15–24

    Article  CAS  Google Scholar 

  64. D’Assoro AB, Liu T, Quatraro C et al (2014) The mitotic kinase Aurora-A promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERα+ breast cancer cells. Oncogene 33:599–610

    Article  PubMed  CAS  Google Scholar 

  65. Syrovets T, Büchele B, Krauss C et al (2005) Acetyl-boswellic acids inhibit lipopolysaccharide-mediated TNF-α induction in monocytes by direct interaction with IκB kinases. J Immunol 174:498–506

    Article  CAS  PubMed  Google Scholar 

  66. Van Brocklyn JR, Wojton J, Meisen WH et al (2014) Aurora-A inhibition offers a novel therapy effective against intracranial glioblastoma. Cancer Res 74:5364–5370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Cervantes A, Elez E, Roda D et al (2012) Phase I pharmacokinetic/pharmacodynamic study of MLN8237, an investigational, oral, selective Aurora A kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res 18:4764–4774

    Article  CAS  PubMed  Google Scholar 

  68. Vlashi E, Pajonk F (2015) Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol 31:28–35

    Article  CAS  PubMed  Google Scholar 

  69. Mistry AM, Hale AT, Chambless LB, Weaver KD, Thompson RC, Ihrie RA (2017) Influence of glioblastoma contact with the lateral ventricle on survival: a meta-analysis. J Neuro-Oncol 131:125–133

    Article  CAS  Google Scholar 

  70. Adeberg S, König L, Bostel T et al (2014) Glioblastoma recurrence patterns after radiation therapy with regard to the subventricular zone. Int J Radiat Oncol Biol Phys 90:886–893

    Article  PubMed  Google Scholar 

  71. He S, Yang S, Deng G et al (2010) Aurora kinase A induces miR-17-92 cluster through regulation of E2F1 transcription factor. Cell Mol Life Sci 67:2069–2076

    Article  CAS  PubMed  Google Scholar 

  72. Gomaa A, Peng D, Chen Z et al (2019) Epigenetic regulation of AURKA by miR-4715-3p in upper gastrointestinal cancers. Sci Rep 9:16970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Oliveto S, Mancino M, Manfrini N, Biffo S (2017) Role of microRNAs in translation regulation and cancer. World J Biol Chem 8:45

    Article  PubMed  PubMed Central  Google Scholar 

  74. Qiao W, Guo B, Zhou H et al (2017) miR-124 suppresses glioblastoma growth and potentiates chemosensitivity by inhibiting AURKA. Biochem Biophys Res Commun 486:43–48

    Article  CAS  PubMed  Google Scholar 

  75. Dolan J, Walshe K, Alsbury S et al (2007) The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genomics 8:320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Liu C, Fu H, Liu X, Lei Q, Zhang Y, She X, Liu Q, Liu Q, Sun Y, Li G, Wu M (2018) LINC00470 coordinates the epigenetic regulation of ELFN2 to distract GBM cell autophagy. Mol Ther 26:2267–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang X, Kiang K, Zhang G, Leung G (2015) Long non-coding RNAs dysregulation and function in glioblastoma stem cells. Noncoding RNA 1:69–86

    PubMed  PubMed Central  Google Scholar 

  78. Hu J, Markowitz G, Wang X-F (2016) Isolation of glioma-initiating cells for biological study. pp 197–209

  79. Dirkse A, Golebiewska A, Buder T et al (2019) Stem cell-associated heterogeneity in glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat Commun 10:1787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Liu Z, Wang F, Zhou Z-W et al (2017) Alisertib induces G2/M arrest, apoptosis, and autophagy via PI3K/Akt/mTOR- and p38 MAPK-mediated pathways in human glioblastoma cells. Am J Transl Res 9:845–873

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Masui K, Tanaka K, Akhavan D et al (2013) mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab 18:726–739

    Article  CAS  PubMed  Google Scholar 

  82. Sun C, Chan F, Briassouli P, Linardopoulos S (2007) Aurora kinase inhibition downregulates NF-κB and sensitises tumour cells to chemotherapeutic agents. Biochem Biophys Res Commun 352:220–225

    Article  CAS  PubMed  Google Scholar 

  83. Temme A, Geiger KD, Wiedemuth R, Conseur K, Pietsch T, Felsberg J, Reifenberger G, Tatsuka M, Hagel C, Westphal M, Berger H, Simon M, Weller M, Schackert G (2010) Giant cell glioblastoma is associated with altered Aurora B expression and concomitant p53 mutation. J Neuropathol Exp Neurol 69:632–642

    Article  CAS  PubMed  Google Scholar 

  84. Jung J-E, Kim T-K, Lee J-S et al (2005) Survivin inhibits anti-growth effect of p53 activated by Aurora B. Biochem Biophys Res Commun 336:1164–1171

    Article  CAS  PubMed  Google Scholar 

  85. Tsuno T, Natsume A, Katsumata S et al (2007) Inhibition of Aurora-B function increases formation of multinucleated cells in p53 gene deficient cells and enhances anti-tumor effect of temozolomide in human glioma cells. J Neuro-Oncol 83:249–258

    Article  CAS  Google Scholar 

  86. Zeng WF, Navaratne K, Prayson RA, Weil RJ (2006) Aurora B expression correlates with aggressive behaviour in glioblastoma multiforme. J Clin Pathol 60:218–221

    Article  CAS  Google Scholar 

  87. Borges KS, Castro-Gamero AM, Moreno DA et al (2012) Inhibition of Aurora kinases enhances chemosensitivity to temozolomide and causes radiosensitization in glioblastoma cells. J Cancer Res Clin Oncol 138:405–414

    Article  CAS  PubMed  Google Scholar 

  88. Koul D, Fu J, Shen R et al (2012) Antitumor activity of NVP-BKM120—a selective pan class I PI3 kinase inhibitor showed differential forms of cell death based on p53 status of glioma cells. Clin Cancer Res 18:184–195

    Article  CAS  PubMed  Google Scholar 

  89. Klein A, Reichardt W, Jung V et al (2004) Overexpression and amplification of STK15 in human gliomas. Int J Oncol 25:1789–1794

    CAS  PubMed  Google Scholar 

  90. Loh J-K, Lieu A-S, Chou C-H et al (2010) Differential expression of centrosomal proteins at different stages of human glioma. BMC Cancer 10:268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Scrideli CA, Carlotti CG, Okamoto OK et al (2008) Gene expression profile analysis of primary glioblastomas and non-neoplastic brain tissue: identification of potential target genes by oligonucleotide microarray and real-time quantitative PCR. J Neuro-Oncol 88:281–291

    Article  CAS  Google Scholar 

  92. Araki K, Nozaki K, Ueba T et al (2004) High expression of Aurora-B/Aurora and Ipll-like midbody-associated protein (AIM-1) in astrocytomas. J Neuro-Oncol 67:53–64

    Article  Google Scholar 

  93. Barton VN, Foreman NK, Donson AM et al (2010) Aurora kinase A as a rational target for therapy in glioblastoma. J Neurosurg Pediatr 6:98–105. https://doi.org/10.3171/2010.3.PEDS10120

  94. Samaras V, Stamatelli A, Samaras E et al (2009) Comparative immunohistochemical analysis of aurora-A and aurora-B expression in human glioblastomas. Associations with proliferative activity and clinicopathological features. Pathol Res Pract 205:765–773

    Article  CAS  PubMed  Google Scholar 

  95. Lee P-Y, Chen C-L, Lin Z-Z et al (2013) The Aurora kinases inhibitor VE-465 is a novel treatment for glioblastoma multiforme. Oncology 84:326–335

    Article  CAS  PubMed  Google Scholar 

  96. Wiedemuth R, Klink B, Fujiwara M et al (2016) Janus face-like effects of Aurora B inhibition: antitumoral mode of action versus induction of aneuploid progeny. Carcinogenesis 37:993–1003

    Article  CAS  PubMed  Google Scholar 

  97. El-Sheikh A, Fan R, Birks D, et al (2010) Inhibition of Aurora kinase A enhances chemosensitivity of medulloblastoma cell lines. Pediatr Blood Cancer 49:n/a-n/a. https://doi.org/10.1002/pbc.22465

  98. Zhang Q, Liu Y, Gao F, Ding Q, Cho C, Hur W, Jin Y, Uno T, Joazeiro CA, Gray N (2006) Discovery of EGFR selective 4,6-disubstituted pyrimidines from a combinatorial kinase-directed heterocycle library. J Am Chem Soc 128:2182–2183. https://doi.org/10.1021/ja0567485

  99. Liewer S, Huddleston A (2018) Alisertib: a review of pharmacokinetics, efficacy and toxicity in patients with hematologic malignancies and solid tumors. Expert Opin Investig Drugs 27:105–112

    Article  CAS  PubMed  Google Scholar 

  100. Manfredi MG, Ecsedy JA, Chakravarty A et al (2011) Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of Aurora A kinase using novel in vivo pharmacodynamic assays. Clin Cancer Res 17:7614–7624

    Article  CAS  PubMed  Google Scholar 

  101. Kollareddy M, Zheleva D, Dzubak P et al (2012) Aurora kinase inhibitors: progress towards the clinic. Investig New Drugs 30:2411–2432

    Article  CAS  Google Scholar 

  102. Durlacher CT, Li Z-L, Chen X-W et al (2016) An update on the pharmacokinetics and pharmacodynamics of Alisertib, a selective Aurora kinase A inhibitor. Clin Exp Pharmacol Physiol 43:585–601

    Article  CAS  PubMed  Google Scholar 

  103. Hill RM, Kuijper S, Lindsey JC et al (2015) Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell 27:72–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hong X, O’Donnell JP, Salazar CR et al (2014) The selective Aurora-A kinase inhibitor MLN8237 (Alisertib) potently inhibits proliferation of glioblastoma neurosphere tumor stem-like cells and potentiates the effects of temozolomide and ionizing radiation. Cancer Chemother Pharmacol 73:1–9

    Article  CAS  Google Scholar 

  105. Mohan P, Castellsague J, Jiang J et al (2013) Genomic imbalance of HMMR/RHAMM regulates the sensitivity and response of malignant peripheral nerve sheath tumour cells to aurora kinase inhibition. Oncotarget 4. https://doi.org/10.18632/oncotarget.793

  106. Goldberg SL, Fenaux P, Craig MD, Gyan E, Lister J, Kassis J, Pigneux A, Schiller GJ, Jung J, Jane Leonard E, Fingert H, Westervelt P (2014) An exploratory phase 2 study of investigational Aurora A kinase inhibitor Alisertib (MLN8237) in acute myelogenous leukemia and myelodysplastic syndromes. Leuk Res Rep 3:58–61

    PubMed  PubMed Central  Google Scholar 

  107. NCT00830518 A Phase 2 Trial of MLN8237 in adult participants with acute myelogenous leukemia and high-grade myelodysplastic syndrome - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT00830518?term=Alisertib+%28MLN8237%29&draw=3&rank=11. Accessed 26 Dec 2019

  108. NCT02038647 Phase 2 study of Alisertib (MLN8237) in combination with paclitaxel versus placebo in combination with paclitaxel as second line therapy for small cell lung cancer (SCLC) - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02038647?term=Alisertib+%28MLN8237%29&draw=4&rank=28. Accessed 26 Dec 2019

  109. NCT01094288 A Phase 1 study of Alisertib participants with advanced solid tumors including castration-resistant prostate cancer receiving a standard docetaxel regimen - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01094288?term=Alisertib+%28MLN8237%29&draw=7&rank=20. Accessed 26 Dec 2019

  110. NCT00651664 A Phase I clinical and pharmacodynamic study of MLN8237, a novel Aurora A kinase inhibitor, in participants with advanced malignancies - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT00651664?term=Alisertib+%28MLN8237%29&draw=8&rank=9. Accessed 26 Dec 2019

  111. Daniele S, Sestito S, Pietrobono D, Giacomelli C, Chiellini G, di Maio D, Marinelli L, Novellino E, Martini C, Rapposelli S (2017) Dual inhibition of PDK1 and Aurora kinase A: an effective strategy to induce differentiation and apoptosis of human glioblastoma multiforme stem cells. ACS Chem Neurosci 8:100–114

    Article  CAS  PubMed  Google Scholar 

  112. Levesley J, Steele L, Brüning-Richardson A et al (2018) Selective BCL-XL inhibition promotes apoptosis in combination with MLN8237 in medulloblastoma and pediatric glioblastoma cells. Neuro-Oncology 20:203–214

    Article  CAS  PubMed  Google Scholar 

  113. Kurokawa C, Geekiyanage H, Allen C et al (2017) Alisertib demonstrates significant antitumor activity in bevacizumab resistant, patient derived orthotopic models of glioblastoma. J Neuro-Oncol 131:41–48

    Article  CAS  Google Scholar 

  114. Wick W, Platten M, Wick A et al (2016) Current status and future directions of anti-angiogenic therapy for gliomas. Neuro-Oncology 18:315–328

    Article  CAS  PubMed  Google Scholar 

  115. Song A, Andrews DW, Werner-Wasik M et al (2019) Phase I trial of Alisertib with concurrent fractionated stereotactic re-irradiation for recurrent high grade gliomas. Radiother Oncol 132:135–141

    Article  CAS  PubMed  Google Scholar 

  116. Ando R, Ikegami H, Sakiyama M et al (2010) 3-Cyano-6-(5-methyl-3-pyrazoloamino) pyridines: selective Aurora A kinase inhibitors. Bioorg Med Chem Lett 20:4709–4711

    Article  CAS  PubMed  Google Scholar 

  117. Min YH, Kim W, Kim J-E (2016) The Aurora kinase A inhibitor TC-A2317 disrupts mitotic progression and inhibits cancer cell proliferation. Oncotarget 7:84718–84735

    PubMed  PubMed Central  Google Scholar 

  118. Zumbar CT, Usubalieva A, King PD et al (2018) The CNS penetrating taxane TPI 287 and the AURKA inhibitor Alisertib induce synergistic apoptosis in glioblastoma cells. J Neuro-Oncol 137:481–492

    Article  CAS  Google Scholar 

  119. Yang J, Ikezoe T, Nishioka C et al (2007) AZD1152, a novel and selective Aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood 110:2034–2040

    Article  CAS  PubMed  Google Scholar 

  120. Wilkinson RW, Odedra R, Heaton SP et al (2007) AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res 13:3682–3688

    Article  CAS  PubMed  Google Scholar 

  121. Sessa F, Villa F (2014) Structure of Aurora B–INCENP in complex with barasertib reveals a potential transinhibitory mechanism. Acta Crystallogr F Struct Biol Commun 70:294–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Falchook GS, Bastida CC, Kurzrock R (2015) Aurora kinase inhibitors in oncology clinical trials: current state of the progress. Semin Oncol 42:832–848

    Article  CAS  PubMed  Google Scholar 

  123. Diaz RJ, Golbourn B, Shekarforoush M et al (2012) Aurora kinase B/C inhibition impairs malignant glioma growth in vivo. J Neuro-Oncol 108:349–360

    Article  CAS  Google Scholar 

  124. Pacaud R, Cheray M, Nadaradjane A et al (2015) Histone H3 phosphorylation in GBM: a new rational to guide the use of kinase inhibitors in anti-GBM therapy. Theranostics 5:12–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Harrington EA, Bebbington D, Moore J et al (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10:262–267

    Article  CAS  PubMed  Google Scholar 

  126. Zhao B, Smallwood A, Yang J et al (2008) Modulation of kinase-inhibitor interactions by auxiliary protein binding: crystallography studies on Aurora A interactions with VX-680 and with TPX2. Protein Sci 17:1791–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. de Groot CO, Hsia JE, Anzola JV et al (2015) A cell biologist’s field guide to Aurora kinase inhibitors. Front Oncol 5. https://doi.org/10.3389/fonc.2015.00285

  128. Oliveira TM, Ahmad R, Engh RA (2011) VX680 binding in Aurora A: π−π interactions involving the conserved aromatic amino acid of the flexible glycine-rich loop. J Phys Chem A 115:3895–3904

    Article  CAS  PubMed  Google Scholar 

  129. Tyler RK, Shpiro N, Marquez R, Eyers PA (2007) VX-680 inhibits Aurora A and Aurora B kinase activity in human cells. Cell Cycle 6:2846–2854

    Article  CAS  PubMed  Google Scholar 

  130. Traynor AM, Hewitt M, Liu G et al (2011) Phase I dose escalation study of MK-0457, a novel Aurora kinase inhibitor, in adult patients with advanced solid tumors. Cancer Chemother Pharmacol 67:305–314

    Article  CAS  PubMed  Google Scholar 

  131. Li N, Maly DJ, Chanthery YH et al (2015) Radiotherapy followed by Aurora kinase inhibition targets tumor-propagating cells in human glioblastoma. Mol Cancer Ther 14:419–428

    Article  CAS  PubMed  Google Scholar 

  132. Paget JA, Restall IJ, Daneshmand M, Mersereau JA, Simard MA, Parolin DA, Lavictoire SJ, Amin MS, Islam S, Lorimer IA (2012) Repression of cancer cell senescence by PKCι. Oncogene 31:3584–3596

    Article  CAS  PubMed  Google Scholar 

  133. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8:627–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lake EW, Muretta JM, Thompson AR et al (2018) Quantitative conformational profiling of kinase inhibitors reveals origins of selectivity for Aurora kinase activation states. Proc Natl Acad Sci 115:E11894–E11903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Borges KS, Andrade AF, Silveira VS et al (2017) The aurora kinase inhibitor AMG 900 increases apoptosis and induces chemosensitivity to anticancer drugs in the NCI-H295 adrenocortical carcinoma cell line. Anti-Cancer Drugs 28:634–644

    Article  CAS  PubMed  Google Scholar 

  137. Bush TL, Payton M, Heller S et al (2013) AMG 900, a small-molecule inhibitor of Aurora kinases, potentiates the activity of microtubule-targeting agents in human metastatic breast cancer models. Mol Cancer Ther 12:2356–2366

    Article  CAS  PubMed  Google Scholar 

  138. Geron L, Borges KS, Andrade AF et al (2015) Antitumour activity of AMG 900 alone or in combination with histone deacetylase inhibitor SaHa on medulloblastoma cell lines. Neurol Res 37:703–711

    Article  CAS  PubMed  Google Scholar 

  139. Kalous O, Conklin D, Desai AJ et al (2013) AMG 900, pan-Aurora kinase inhibitor, preferentially inhibits the proliferation of breast cancer cell lines with dysfunctional p53. Breast Cancer Res Treat 141:397–408

    Article  CAS  PubMed  Google Scholar 

  140. Payton M, Bush TL, Chung G et al (2010) Preclinical evaluation of AMG 900, a novel potent and highly selective Pan-Aurora kinase inhibitor with activity in taxane-resistant tumor cell lines. Cancer Res 70:9846–9854

    Article  CAS  PubMed  Google Scholar 

  141. Carducci M, Shaheen M, Markman B et al (2018) A phase 1, first-in-human study of AMG 900, an orally administered pan-Aurora kinase inhibitor, in adult patients with advanced solid tumors. Investig New Drugs 36:1060–1071

    Article  CAS  Google Scholar 

  142. NCT00858377 A Phase 1 first-in-human study evaluating AMG 900 in advanced solid tumors - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT00858377. Accessed 26 Dec 2019

  143. Kantarjian HM, Schuster MW, Jain N et al (2017) A phase 1 study of AMG 900, an orally administered pan-Aurora kinase inhibitor, in adult patients with acute myeloid leukemia. Am J Hematol 92:660–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. NCT01380756 Study evaluating orally administered AMG 900 in adult subjects with acute myeloid leukemia - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01380756. Accessed 26 Dec 2019

  145. Ryu J, Pyo J, Lee C-W, Kim J-E (2018) An Aurora kinase inhibitor, AMG900, inhibits glioblastoma cell proliferation by disrupting mitotic progression. Cancer Med 7:5589–5603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Janeček M, Rossmann M, Sharma P et al (2016) Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its protein-protein interaction with TPX2. Sci Rep 6:28528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Emanuel S, Rugg CA, Gruninger RH et al (2005) The in vitro and in vivo effects of JNJ-7706621: a dual inhibitor of cyclin-dependent kinases and Aurora kinases. Cancer Res 65:9038–9046

    Article  CAS  PubMed  Google Scholar 

  148. Fischer PM (2004) The use of CDK inhibitors in oncology: a pharmaceutical perspective. Cell Cycle 3:740–744

    Article  Google Scholar 

  149. Zhong S, Wu B, Dong X, Han Y, Jiang S, Zhang Y, Bai Y, Luo SX, Chen Y, Zhang H, Zhao G (2018) Identification of driver genes and key pathways of glioblastoma shows JNJ-7706621 as a novel antiglioblastoma drug. World Neurosurg 109:e329–e342

    Article  PubMed  Google Scholar 

  150. Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2:358–364

    Article  CAS  PubMed  Google Scholar 

  151. Heron NM, Anderson M, Blowers DP et al (2006) SAR and inhibitor complex structure determination of a novel class of potent and specific Aurora kinase inhibitors. Bioorg Med Chem Lett 16:1320–1323

    Article  CAS  PubMed  Google Scholar 

  152. Ditchfield C, Johnson VL, Tighe A et al (2003) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161:267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gavriilidis P, Gavriilidis P, Giakoustidis A, Giakoustidis D (2015) Aurora kinases and potential medical applications of Aurora kinase inhibitors: a review. J Clin Med Res 7:742–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cicenas J (2016) The Aurora kinase inhibitors in cancer research and therapy. J Cancer Res Clin Oncol 142:1995–2012

    Article  CAS  PubMed  Google Scholar 

  155. Sarvagalla S, Coumar M (2015) Structural biology insight for the design of sub-type selective Aurora kinase inhibitors. Curr Cancer Drug Targets 15:375–393

    Article  CAS  PubMed  Google Scholar 

  156. Bavetsias V, Linardopoulos S (2015) Aurora kinase inhibitors: current status and outlook. Front Oncol 5. https://doi.org/10.3389/fonc.2015.00278

  157. Borisa AC, Bhatt HG (2017) A comprehensive review on Aurora kinase: small molecule inhibitors and clinical trial studies. Eur J Med Chem 140:1–19

    Article  CAS  PubMed  Google Scholar 

  158. Bello T, Gujral TS (2018) KInhibition: a kinase inhibitor selection portal. iScience 8:49–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Vulpetti A, Bosotti R (2004) Sequence and structural analysis of kinase ATP pocket residues. Farm 59:759–765

    Article  CAS  Google Scholar 

  160. Knight ZA, Shokat KM (2005) Features of selective kinase inhibitors. Chem Biol 12:621–637

    Article  CAS  PubMed  Google Scholar 

  161. Davis MI, Hunt JP, Herrgard S et al (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29:1046–1051

    Article  CAS  PubMed  Google Scholar 

  162. Bayliss R, Burgess SG, McIntyre PJ (2017) Switching Aurora-A kinase on and off at an allosteric site. FEBS J 284:2947–2954

    Article  CAS  PubMed  Google Scholar 

  163. Dees EC, Infante JR, Cohen RB, O’Neil BH, Jones S, von Mehren M, Danaee H, Lee Y, Ecsedy J, Manfredi M, Galvin K, Stringer B, Liu H, Eton O, Fingert H, Burris H (2011) Phase 1 study of MLN8054, a selective inhibitor of Aurora A kinase in patients with advanced solid tumors. Cancer Chemother Pharmacol 67:945–954

    Article  CAS  PubMed  Google Scholar 

  164. Sells TB, Chau R, Ecsedy JA et al (2015) MLN8054 and Alisertib (MLN8237): discovery of selective oral Aurora A inhibitors. ACS Med Chem Lett 6:630–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Krishnamurty R, Maly DJ (2010) Biochemical mechanisms of resistance to small-molecule protein kinase inhibitors. ACS Chem Biol 5:121–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Daub H, Specht K, Ullrich A (2004) Strategies to overcome resistance to targeted protein kinase inhibitors. Nat Rev Drug Discov 3:1001–1010

    Article  CAS  PubMed  Google Scholar 

  167. Zhang J, Adrián FJ, Jahnke W et al (2010) Targeting Bcr–Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463:501–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Barouch-Bentov R, Sauer K (2011) Mechanisms of drug resistance in kinases. Expert Opin Investig Drugs 20:153–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Premkumar DR, Jane EP, Pollack IF (2015) Cucurbitacin-I inhibits Aurora kinase A, Aurora kinase B and survivin, induces defects in cell cycle progression and promotes ABT-737-induced cell death in a caspase-independent manner in malignant human glioma cells. Cancer Biol Ther 16:233–243

    Article  CAS  PubMed  Google Scholar 

  170. Gan J, Wang F, Mu D et al (2016) RNA interference targeting Aurora-A sensitizes glioblastoma cells to temozolomide chemotherapy. Oncol Lett 12:4515–4523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yang S, Li X, Guan W et al (2017) NVP-BKM120 inhibits colon cancer growth via FoxO3a-dependent PUMA induction. Oncotarget 8:83052–83062

    PubMed  PubMed Central  Google Scholar 

  172. Blaskovich MA, Sun J, Cantor A (2003) Discovery of JSI-124 (Cucurbitacin I ), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 124:1270–1279

    Google Scholar 

  173. Berendsen S, Broekman M, Seute T et al (2012) Valproic acid for the treatment of malignant gliomas: review of the preclinical rationale and published clinical results. Expert Opin Investig Drugs 21:1391–1415

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by São Paulo Research Foundation (FAPESP), Grant Nos. 2009/50118-2, 2016/19820-6, 2017/06511-8, and 2018/23372-4, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant Nos. 151760/2018-7 and 409711/2018-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kleiton Silva Borges.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida Magalhães, T., de Sousa, G.R., Alencastro Veiga Cruzeiro, G. et al. The therapeutic potential of Aurora kinases targeting in glioblastoma: from preclinical research to translational oncology. J Mol Med 98, 495–512 (2020). https://doi.org/10.1007/s00109-020-01895-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01895-x

Keywords

Navigation