Skip to main content

Advertisement

Log in

AMG 900, pan-Aurora kinase inhibitor, preferentially inhibits the proliferation of breast cancer cell lines with dysfunctional p53

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Aurora kinases play important roles in cell division and are frequently overexpressed in human cancer. AMG 900 is a novel pan-Aurora kinase inhibitor currently being tested in Phase I clinical trials. We aimed to evaluate the in vitro activity of AMG 900 in a panel of 44 human breast cancer and immortalized cell lines and identify predictors of response. AMG 900 inhibited proliferation at low nanomolar concentrations in all cell lines tested. Response was further classified based on the induction of lethality. 25 cell lines were classified as highly sensitive (lethality at 10 nM of AMG 900 >10 %), 19 cell lines as less sensitive to AMG 900 (lethality at 10 nM of AMG 900 <10 %). Traditional molecular subtypes of breast cancer did not predict for this differential response. There was a weak association between AURKA amplification and response to AMG 900 (response ratio = 2.53, p = 0.09). mRNA expression levels of AURKA, AURKB, and AURKC and baseline protein levels of Aurora kinases A and B did not significantly associate with response. Cell lines with TP53 loss of function mutations (RR = 1.86, p = 0.004) and low baseline p21 protein levels (RR = 2.28, p = 0.0004) were far more likely to be classified as highly sensitive to AMG 900. AMG 900 induced p53 and p21 protein expression in cell lines with wt TP53. AMG 900 caused the accumulation of cells with >4 N DNA content in a majority of cell lines independently of sensitivity and p53 status. AMG 900 induced more pronounced apoptosis in highly sensitive p53-dysfunctional cell lines. We have found that AMG 900 is highly active in breast cancer cell lines and that TP53 loss of function mutations as well as low baseline expression of p21 protein predict strongly for increased sensitivity to this compound in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carmena M, Earnshaw WC (2003) The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4(11):842–854. doi:10.1038/nrm1245

    Article  PubMed  CAS  Google Scholar 

  2. Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2(1):21–32. doi:10.1038/35048096

    Article  PubMed  CAS  Google Scholar 

  3. Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, Schryver B, Flanagan P, Clairvoyant F, Ginther C, Chan CS, Novotny M, Slamon DJ, Plowman GD (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17(11):3052–3065. doi:10.1093/emboj/17.11.3052

    Article  PubMed  CAS  Google Scholar 

  4. Tanaka T, Kimura M, Matsunaga K, Fukada D, Mori H, Okano Y (1999) Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res 59(9):2041–2044

    PubMed  CAS  Google Scholar 

  5. Ditchfield C, Johnson VL, Tighe A, Ellston R, Haworth C, Johnson T, Mortlock A, Keen N, Taylor SS (2003) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161(2):267–280. doi:10.1083/jcb.200208091

    Article  PubMed  CAS  Google Scholar 

  6. Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL, Peters JM (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161(2):281–294. doi:10.1083/jcb.200208092

    Article  PubMed  CAS  Google Scholar 

  7. Nair JS, Ho AL, Tse AN, Coward J, Cheema H, Ambrosini G, Keen N, Schwartz GK (2009) Aurora B kinase regulates the postmitotic endoreduplication checkpoint via phosphorylation of the retinoblastoma protein at serine 780. Mol Biol Cell 20(8):2218–2228. doi:10.1091/mbc.E08-08-0885

    Article  PubMed  CAS  Google Scholar 

  8. Gorgun G, Calabrese E, Hideshima T, Ecsedy J, Perrone G, Mani M, Ikeda H, Bianchi G, Hu Y, Cirstea D, Santo L, Tai YT, Nahar S, Zheng M, Bandi M, Carrasco RD, Raje N, Munshi N, Richardson P, Anderson KC (2010) A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma. Blood 115(25):5202–5213. doi:10.1182/blood-2009-12-259523

    Article  PubMed  CAS  Google Scholar 

  9. Kaestner P, Stolz A, Bastians H (2009) Determinants for the efficiency of anticancer drugs targeting either Aurora-A or Aurora-B kinases in human colon carcinoma cells. Mol Cancer Ther 8(7):2046–2056. doi:10.1158/1535-7163.MCT-09-0323

    Article  PubMed  CAS  Google Scholar 

  10. Galipeau PC, Cowan DS, Sanchez CA, Barrett MT, Emond MJ, Levine DS, Rabinovitch PS, Reid BJ (1996) 17p (p53) allelic losses, 4 N (G2/tetraploid) populations, and progression to aneuploidy in Barrett’s esophagus. Proc Natl Acad Sci USA 93(14):7081–7084

    Article  PubMed  CAS  Google Scholar 

  11. Ramel S, Sanchez CA, Schimke MK, Neshat K, Cross SM, Raskind WH, Reid BJ (1995) Inactivation of p53 and the development of tetraploidy in the elastase-SV40 T antigen transgenic mouse pancreas. Pancreas 11(3):213–222

    Article  PubMed  CAS  Google Scholar 

  12. Cheok CF, Kua N, Kaldis P, Lane DP (2010) Combination of nutlin-3 and VX-680 selectively targets p53 mutant cells with reversible effects on cells expressing wild-type p53. Cell Death Differ 17(9):1486–1500. doi:10.1038/cdd.2010.18

    Article  PubMed  CAS  Google Scholar 

  13. Hirano A, Kurimura T (1974) Virally transformed cells and cytochalasin B. I. The effect of cytochalasin B on cytokinesis, karyokinesis and DNA synthesis in cells. Exp Cell Res 89(1):111–120

    Article  PubMed  CAS  Google Scholar 

  14. Minn AJ, Boise LH, Thompson CB (1996) Expression of Bcl-xL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Dev 10(20):2621–2631

    Article  PubMed  CAS  Google Scholar 

  15. Cross SM, Sanchez CA, Morgan CA, Schimke MK, Ramel S, Idzerda RL, Raskind WH, Reid BJ (1995) A p53-dependent mouse spindle checkpoint. Science 267(5202):1353–1356

    Article  PubMed  CAS  Google Scholar 

  16. Aylon Y, Oren M (2011) p53: guardian of ploidy. Mol Oncol 5(4):315–323. doi:10.1016/j.molonc.2011.07.007

    Article  PubMed  CAS  Google Scholar 

  17. Castedo M, Coquelle A, Vivet S, Vitale I, Kauffmann A, Dessen P, Pequignot MO, Casares N, Valent A, Mouhamad S, Schmitt E, Modjtahedi N, Vainchenker W, Zitvogel L, Lazar V, Garrido C, Kroemer G (2006) Apoptosis regulation in tetraploid cancer cells. EMBO J 25(11):2584–2595. doi:10.1038/sj.emboj.7601127

    Article  PubMed  CAS  Google Scholar 

  18. Margolis RL, Lohez OD, Andreassen PR (2003) G1 tetraploidy checkpoint and the suppression of tumorigenesis. J Cell Biochem 88(4):673–683. doi:10.1002/jcb.10411

    Article  PubMed  CAS  Google Scholar 

  19. Lens SM, Voest EE, Medema RH (2010) Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 10(12):825–841. doi:10.1038/nrc2964

    Article  PubMed  CAS  Google Scholar 

  20. Carpinelli P, Moll J (2008) Aurora kinases and their inhibitors: more than one target and one drug. Adv Exp Med Biol 610:54–73. doi:10.1007/978-0-387-73898-7_5

    Article  PubMed  CAS  Google Scholar 

  21. Heiser LM, Sadanandam A, Kuo WL, Benz SC, Goldstein TC, Ng S, Gibb WJ, Wang NJ, Ziyad S, Tong F, Bayani N, Hu Z, Billig JI, Dueregger A, Lewis S, Jakkula L, Korkola JE, Durinck S, Pepin F, Guan Y, Purdom E, Neuvial P, Bengtsson H, Wood KW, Smith PG, Vassilev LT, Hennessy BT, Greshock J, Bachman KE, Hardwicke MA, Park JW, Marton LJ, Wolf DM, Collisson EA, Neve RM, Mills GB, Speed TP, Feiler HS, Wooster RF, Haussler D, Stuart JM, Gray JW, Spellman PT (2012) Subtype and pathway specific responses to anticancer compounds in breast cancer. Proc Natl Acad Sci USA 109(8):2724–2729. doi:10.1073/pnas.1018854108

    Article  PubMed  CAS  Google Scholar 

  22. Romanelli A, Clark A, Assayag F, Chateau-Joubert S, Poupon MF, Servely JL, Fontaine JJ, Liu X, Spooner E, Goodstal S, de Cremoux P, Bieche I, Decaudin D, Marangoni E (2012) Inhibiting aurora kinases reduces tumor growth and suppresses tumor recurrence after chemotherapy in patient-derived triple-negative breast cancer xenografts. Mol Cancer Ther 11(12):2693–2703. doi:10.1158/1535-7163.MCT-12-0441-T

    Article  PubMed  CAS  Google Scholar 

  23. Diamond JR, Eckhardt SG, Tan AC, Newton TP, Selby HM, Brunkow KL, Kachaeva MI, Varella-Garcia M, Pitts TM, Bray MR, Fletcher GC, Tentler JJ (2013) Predictive biomarkers of sensitivity to the aurora and angiogenic kinase Inhibitor ENMD-2076 in preclinical breast cancer models. Clin Cancer Res 19(1):291–303. doi:10.1158/1078-0432.CCR-12-1611

    Article  PubMed  CAS  Google Scholar 

  24. Carducci MF, Paller CJ, Bauman JE, Azad NS, Shubhakar P, Tang R, Stroh M, Friberg GR, Verschraegen CF (2012) First-in-human study of AMG 900, an oral pan-Aurora kinase ihhibitor, in adult patients (pts) with advanced solid tumors [abstract]. J Clin Oncol 30(15):3009 (Supplement)

    Google Scholar 

  25. Payton M, Bush TL, Chung G, Ziegler B, Eden P, McElroy P, Ross S, Cee VJ, Deak HL, Hodous BL, Nguyen HN, Olivieri PR, Romero K, Schenkel LB, Bak A, Stanton M, Dussault I, Patel VF, Geuns-Meyer S, Radinsky R, Kendall RL (2010) Preclinical evaluation of AMG 900, a novel potent and highly selective pan-aurora kinase inhibitor with activity in taxane-resistant tumor cell lines. Cancer Res 70(23):9846–9854. doi:10.1158/0008-5472.CAN-10-3001

    Article  PubMed  CAS  Google Scholar 

  26. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, Ginther C, Atefi M, Chen I, Fowst C, Los G, Slamon DJ (2009) PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 11(5):R77. doi:10.1186/bcr2419

    Article  PubMed  Google Scholar 

  27. Finn RS, Dering J, Ginther C, Wilson CA, Glaspy P, Tchekmedyian N, Slamon DJ (2007) Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/”triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res Treat 105(3):319–326. doi:10.1007/s10549-006-9463-x

    Article  PubMed  CAS  Google Scholar 

  28. Kalous O, Conklin D, Desai AJ, O’Brien NA, Ginther C, Anderson L, Cohen DJ, Britten CD, Taylor I, Christensen JG, Slamon DJ, Finn RS (2012) Dacomitinib (PF-00299804), an irreversible pan-HER inhibitor, inhibits proliferation of HER2-amplified breast cancer cell lines resistant to trastuzumab and lapatinib. Mol Cancer Ther 11(9):1978–1987. doi:10.1158/1535-7163.MCT-11-0730

    Article  PubMed  CAS  Google Scholar 

  29. Kringen P, Bergamaschi A, Due EU, Wang Y, Tagliabue E, Nesland JM, Nehman A, Tonisson N, Borresen-Dale AL (2005) Evaluation of arrayed primer extension for TP53 mutation detection in breast and ovarian carcinomas. Biotechniques 39(5):755–761

    Article  PubMed  CAS  Google Scholar 

  30. Sorlie T, Johnsen H, Vu P, Lind GE, Lothe R, Borresen-Dale AL (2005) Mutation screening of the TP53 gene by temporal temperature gradient gel electrophoresis. Methods Mol Biol 291:207–216

    PubMed  CAS  Google Scholar 

  31. Pauletti G, Godolphin W, Press MF, Slamon DJ (1996) Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. Oncogene 13(1):63–72

    PubMed  CAS  Google Scholar 

  32. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C (2003) Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100(14):8424–8429. doi:10.1073/pnas.1431692100

    Article  PubMed  CAS  Google Scholar 

  33. Borresen-Dale AL (2003) TP53 and breast cancer. Hum Mutat 21(3):292–300. doi:10.1002/humu.10174

    Article  PubMed  CAS  Google Scholar 

  34. Domagala W, Welcker M, Chosia M, Karbowniczek M, Harezga B, Bartkova J, Bartek J, Osborn M (2001) p21/WAF1/Cip1 expression in invasive ductal breast carcinoma: relationship to p53, proliferation rate, and survival at 5 years. Virchows Arch 439(2):132–140

    Article  PubMed  CAS  Google Scholar 

  35. Bertheau P, Espie M, Turpin E, Lehmann J, Plassa LF, Varna M, Janin A, de The H (2008) TP53 status and response to chemotherapy in breast cancer. Pathobiology 75(2):132–139. doi:10.1159/000123851

    Article  PubMed  CAS  Google Scholar 

  36. Jackson JG, Pant V, Li Q, Chang LL, Quintas-Cardama A, Garza D, Tavana O, Yang P, Manshouri T, Li Y, El-Naggar AK, Lozano G (2012) p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell 21(6):793–806. doi:10.1016/j.ccr.2012.04.027

    Article  PubMed  CAS  Google Scholar 

  37. Tao Y, Zhang P, Girdler F, Frascogna V, Castedo M, Bourhis J, Kroemer G, Deutsch E (2008) Enhancement of radiation response in p53-deficient cancer cells by the Aurora-B kinase inhibitor AZD1152. Oncogene 27(23):3244–3255. doi:10.1038/sj.onc.1210990

    Article  PubMed  CAS  Google Scholar 

  38. Dar AA, Belkhiri A, Ecsedy J, Zaika A, El-Rifai W (2008) Aurora kinase A inhibition leads to p73-dependent apoptosis in p53-deficient cancer cells. Cancer Res 68(21):8998–9004. doi:10.1158/0008-5472.CAN-08-2658

    Article  PubMed  CAS  Google Scholar 

  39. Gizatullin F, Yao Y, Kung V, Harding MW, Loda M, Shapiro GI (2006) The Aurora kinase inhibitor VX-680 induces endoreduplication and apoptosis preferentially in cells with compromised p53-dependent postmitotic checkpoint function. Cancer Res 66(15):7668–7677. doi:10.1158/0008-5472.CAN-05-3353

    Article  PubMed  CAS  Google Scholar 

  40. Ikezoe T, Yang J, Nishioka C, Tasaka T, Taniguchi A, Kuwayama Y, Komatsu N, Bandobashi K, Togitani K, Koeffler HP, Taguchi H (2007) A novel treatment strategy targeting Aurora kinases in acute myelogenous leukemia. Mol Cancer Ther 6(6):1851–1857. doi:10.1158/1535-7163.MCT-07-0067

    Article  PubMed  CAS  Google Scholar 

  41. Donato NJ, Fang D, Sun H, Giannola D, Peterson LF, Talpaz M (2010) Targets and effectors of the cellular response to aurora kinase inhibitor MK-0457 (VX-680) in imatinib sensitive and resistant chronic myelogenous leukemia. Biochem Pharmacol 79(5):688–697. doi:10.1016/j.bcp.2009.10.009

    Article  PubMed  CAS  Google Scholar 

  42. Li M, Jung A, Ganswindt U, Marini P, Friedl A, Daniel PT, Lauber K, Jendrossek V, Belka C (2010) Aurora kinase inhibitor ZM447439 induces apoptosis via mitochondrial pathways. Biochem Pharmacol 79(2):122–129. doi:10.1016/j.bcp.2009.08.011

    Article  PubMed  CAS  Google Scholar 

  43. den Hollander J, Rimpi S, Doherty JR, Rudelius M, Buck A, Hoellein A, Kremer M, Graf N, Scheerer M, Hall MA, Goga A, von Bubnoff N, Duyster J, Peschel C, Cleveland JL, Nilsson JA, Keller U (2010) Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood 116(9):1498–1505. doi:10.1182/blood-2009-11-251074

    Article  Google Scholar 

  44. Grundy M, Seedhouse C, Shang S, Richardson J, Russell N, Pallis M (2010) The FLT3 internal tandem duplication mutation is a secondary target of the aurora B kinase inhibitor AZD1152-HQPA in acute myelogenous leukemia cells. Mol Cancer Ther 9(3):661–672. doi:10.1158/1535-7163.MCT-09-1144

    Article  PubMed  CAS  Google Scholar 

  45. Emanuel S, Rugg CA, Gruninger RH, Lin R, Fuentes-Pesquera A, Connolly PJ, Wetter SK, Hollister B, Kruger WW, Napier C, Jolliffe L, Middleton SA (2005) The in vitro and in vivo effects of JNJ-7706621: a dual inhibitor of cyclin-dependent kinases and aurora kinases. Cancer Res 65(19):9038–9046. doi:10.1158/0008-5472.CAN-05-0882

    Article  PubMed  CAS  Google Scholar 

  46. Fei F, Lim M, Schmidhuber S, Moll J, Groffen J, Heisterkamp N (2012) Treatment of human pre-B acute lymphoblastic leukemia with the Aurora kinase inhibitor PHA-739358 (Danusertib). Mol Cancer 11:42. doi:10.1186/1476-4598-11-42

    Article  PubMed  CAS  Google Scholar 

  47. Cheung CH, Lin WH, Hsu JT, Hour TC, Yeh TK, Ko S, Lien TW, Coumar MS, Liu JF, Lai WY, Shiao HY, Lee TR, Hsieh HP, Chang JY (2011) BPR1K653, a novel Aurora kinase inhibitor, exhibits potent anti-proliferative activity in MDR1 (P-gp170)-mediated multidrug-resistant cancer cells. PLoS ONE 6(8):e23485. doi:10.1371/journal.pone.0023485

    Article  PubMed  CAS  Google Scholar 

  48. Vidarsdottir L, Steingrimsdottir G, Bodvarsdottir SK, Ogmundsdottir HM, Eyfjord JE (2012) Sensitivity of BRCA2 mutated human cell lines to Aurora kinase inhibition. Invest New Drugs 30(2):425–434. doi:10.1007/s10637-010-9566-4

    Article  PubMed  CAS  Google Scholar 

  49. Bosotti R, Carpinelli P, Healy S, Locatelli G, Cappella P, Lanfrancone L, Calogero R, Moll J, Isacchi A (2012) Transcriptional analysis of the Aurora inhibitor Danusertib leading to biomarker identification in TP53 wild type cells. Gene 494(2):202–208. doi:10.1016/j.gene.2011.08.014

    Article  PubMed  CAS  Google Scholar 

  50. Cheung CH, Coumar MS, Hsieh HP, Chang JY (2009) Aurora kinase inhibitors in preclinical and clinical testing. Expert Opin Investig Drugs 18(4):379–398. doi:10.1517/13543780902806392

    Article  PubMed  CAS  Google Scholar 

  51. Chan F, Sun C, Perumal M, Nguyen QD, Bavetsias V, McDonald E, Martins V, Wilsher NE, Raynaud FI, Valenti M, Eccles S, Te Poele R, Workman P, Aboagye EO, Linardopoulos S (2007) Mechanism of action of the Aurora kinase inhibitor CCT129202 and in vivo quantification of biological activity. Mol Cancer Ther 6(12 Pt 1):3147–3157. doi:10.1158/1535-7163.MCT-07-2156

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marc Payton and Greg Friberg for their assistance on experimental design. We thank Eldri Undlien Due and Phuong Vu for their technical assistance. We thank Jiaying Zhuo for the editorial assistance. DJS received Department of Defense Innovator Award W81XWH-11-1-0104. The work was also funded by a gift to DJS by The Wittich Family Project for Emerging Therapies in Breast Cancer at UCLA’s Jonsson Comprehensive Cancer Center.

Conflict of interest

The study was funded in part by Amgen; stock ownership in Amgen (Judy Dering, Dennis J. Slamon), consultant/advisory role in Genentech, and Sanofi-Aventis (Dennis J. Slamon). Other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Finn.

Additional information

Ondrej Kalous and Dylan Conklin have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalous, O., Conklin, D., Desai, A.J. et al. AMG 900, pan-Aurora kinase inhibitor, preferentially inhibits the proliferation of breast cancer cell lines with dysfunctional p53. Breast Cancer Res Treat 141, 397–408 (2013). https://doi.org/10.1007/s10549-013-2702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2702-z

Keywords

Navigation