Skip to main content

Advertisement

Log in

Inhibition of Aurora-B function increases formation of multinucleated cells in p53 gene deficient cells and enhances anti-tumor effect of temozolomide in human glioma cells

  • Original Paper
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Cell division is an elemental process, and mainly consists of chromosome segregation and subsequent cytokinesis. Some errors in this process have the possibility of leading to carcinogenesis. Aurora-B is known as a chromosomal passenger protein that regulates cell division. In our previous studies of giant cell glioblastoma, we reported that multinucleated giant cells resulted from aberrations in cytokinesis with intact nuclear division occurring in the early mitotic phase, probably due to Aurora-B dysfunction. In this study, as we determined p53 gene mutation occurring in multinucleated giant cell glioblastoma, we investigated the role of Aurora-B in formation of multinucleated cells in human neoplasm cells with various p53 statuses as well as cytotoxity of glioma cells to temozolomide (TMZ), a common oral alkylating agent used in the treatment of gliomas. The inhibition of Aurora-B function by small-interfering (si)RNA led to an increase in the number of multinucleated cells and the ratios of G2/M phase in p53-mutant and p53-null cells, but not in p53-wild cells or the cells transduced adenovirally with wild-p53. The combination of TMZ and Aurora-B-siRNA remarkably inhibited the cell viability of TMZ-resistant glioma cells. Accordingly, our results suggested that Aurora-B dysfunction increases in the appearance of multinucleated cells in p53 gene deficient cells, and TMZ treatment in combination with the inhibition of Aurora-B function may become a potential therapy against p53 gene deficient and chemotherapeutic-resistant human gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albertson DG, Collins C, McCormick F, Gray JW (2003) Chromosome aberrations in solid tumors. Nat Genet 34:369–376

    Article  PubMed  CAS  Google Scholar 

  2. Jallepalli PV, Lenguer C (2001) Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer 1:109–117

    Article  PubMed  CAS  Google Scholar 

  3. Doxsey S (1998) The centrosome—a tiny organelle with big potential. Nat Genet 20:104–106

    Article  PubMed  CAS  Google Scholar 

  4. Bischoff JR, Plowman GD (1999) The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol 9:454–459

    Article  PubMed  CAS  Google Scholar 

  5. Giet R, Prigent C (1999) Aurora/Ipl 1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. Cell Sci 112:3591–3601

    CAS  Google Scholar 

  6. Nigg EA (2001) Cell division mitotic kinases as regulators of cell division and its checkpoints. Nature Rev Mol Cell Biol 2:21–32

    Article  CAS  Google Scholar 

  7. Sugimoto K, Urano T, Zushi H, Inoue K, Tasaka H, Tachibana M, Dotsu M (2002) Molecular dynamics of Aurora-A kinase in living mitotic cells simultaneously visualized with histone H3 and nuclear membrane protein importinα. Cell Struct Funct 27:457–467

    Article  PubMed  CAS  Google Scholar 

  8. Berdnik D, Knoblich JA (2002) Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr Biol 12:640–647

    Article  PubMed  CAS  Google Scholar 

  9. Kufer TA, Nigg EA, Silljé HH (2003) Regulation of Aurora-A kinase on the mitotic spindle. Chromosoma 112:159–163

    Article  PubMed  CAS  Google Scholar 

  10. Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, Schryver B, Flanagan P, Clairvoyant F, Ginther C, Chan CS, Novotny M, Slamon DJ, Plowman GD (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17:3052–3065

    Article  PubMed  CAS  Google Scholar 

  11. Murata-Hori M, Wang Y-L (2002) Both midzone and astral microtubules are involved in the delivery of cytokinesis signals: insights from the mobility of aurora B. J Cell Biol 159:45–53

    Article  PubMed  CAS  Google Scholar 

  12. Adams RR, Carmena M, Earnshaw WC (2001) Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol 11:49–54

    Article  PubMed  CAS  Google Scholar 

  13. Kimura M, Matsuda Y, Yoshioka T, Sumi N, Okano Y (1998) Identification of STK12/Aik2: a human gene related to aurora of Drosophila and yeast IPL1. Cytogenet Cell Genet 82:147–152

    Article  PubMed  CAS  Google Scholar 

  14. Zhao X, He M, Wan D, Ye Y, He Y, Han L, Guo M, Huang Y, Qin W, Wang MW, Chong W, Chen J, Zhang L, Yang N, Xu B, Wu M, Zuo L, Gu J (2003) The minimum LOH region defined on chromosome 17p13.3 in human hepatocellular carcinoma with gene content analysis. Cancer Lett 190:221–232

    Article  PubMed  CAS  Google Scholar 

  15. Tatsuka M, Katayama H, Ota T, Tanaka T, Odashima S, Suzuki F, Terada Y (1998) Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res 58:4811–4816

    PubMed  CAS  Google Scholar 

  16. Kimura M, Matsuda Y, Yoshioka T, Okano Y (1999) Cell Cycle-dependent expression and centrosome localization of a third human Aurora/Ipl1-related protein kinase, AIK3. J Biol Chem 274: 7368–7378

    Article  Google Scholar 

  17. Homma T, Fukushima T, Vaccarella S, Yonekawa Y, Di Patre PL, Franceschi S, Ohgaki H (2006) Correlation among pathology, genotype, and patient outcomes in glioblastoma. J Neuropathol Exp Neurol 65: 846–854

    PubMed  CAS  Google Scholar 

  18. Meyer-Puttlitz B, Hayashi Y, Waha A (1997) Molecular genetic analysis of giant cell glioblastomas. Am J Pathol 151:853–857

    PubMed  CAS  Google Scholar 

  19. Muller W, Slowik F, Firsching R (1987) Contribution to the problem of giant cell astrocytomas. Neurosurg Rev 10:213–219

    Article  PubMed  CAS  Google Scholar 

  20. Palma L, Celli P, Maleci A (1989) Malignant monstrocellular brain tumours. A study of 42 surgically treated cases. Acta Neurochir 97:17–25

    Article  CAS  Google Scholar 

  21. Peraud A, Watanabe K, Plate KH, Yoneyama Y, Kleihues P, Ohgaki H (1997) p53 mutations versus EGF receptor expression in giant cell glioblastomas. J Neuropathol Exp Neurol 56(11):1236–1241

    PubMed  CAS  Google Scholar 

  22. Giangaspero F, Doglioni C, Rivano MT (1987) Growth fraction in human brain tumors defined by the monoclonal antibody Ki-67. Acta Neuropathol 74:179–182

    Article  PubMed  CAS  Google Scholar 

  23. Fujita M, Mizuno M, Nagasaka T, Wakabayashi T, Maeda K, Ishii D, Arima T, Kawajiri A, Inagaki M, Yoshida J (2004) Aurora-B dysfunction of multinucleated giant cells in glioma detected by site-specific phosphorylated antibodies. J Neurosurg 101:1012–1017

    Article  PubMed  CAS  Google Scholar 

  24. Maeda K, Mizuno M, Wakabayashi T, Takasu S, Nagasaka T, Inagaki M, Yoshida J (2003) Morphological assessment of the development of multinucleated giant cells by using mitosis-specific phosphorylated antibodies. J Neurosurg 98:854–859

    PubMed  Google Scholar 

  25. Tada M, Iggo RD, Waridel F, Nozaki M, Matsumoto R, Sawamura Y, Shinohe Y, Ikeda J, Abe H (1997) Reappraisal of p53 mutations in human malignant astrocytic neoplasms by p53 functional assay: comparison with conventional structural analyses. Mol Carcinog 18:171–176

    Article  PubMed  CAS  Google Scholar 

  26. Levine AJ (1997) p53, the cellar gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  27. Helton ES, Chen X (2006) p53 modulation of the DNA damage response. J Cell Biochem 1 Oct 9 (in press)

  28. Asaoka K, Tada M, Sawamura Y, Ikeda J, Abe H (2000) Dependence of efficient adenoviral gene delivery in malignant glioma cells on the expression levels of the Coxsackievirus and adenovirus receptor. J Neurosurg 92:1002–1008

    PubMed  CAS  Google Scholar 

  29. Mondal AM, Chinnadurai S, Datta K, Chauhan SS, Sinha S, Chattopadhyay P (2006) Identification and functional characterization of a novel unspliced transcript variant of HIC-1 in human cancer cells exposed to adverse growth conditions. Cancer Res 66: 10466–10477

    Article  PubMed  CAS  Google Scholar 

  30. Okamura H, Yoshida K, Morimoto H, Hanaji T (2005) PTEN expression elicited by EGR-1 transcription factor in calyculin A-induced apoptotic cells. J Cell Biochem 94(1):117–125

    Article  PubMed  CAS  Google Scholar 

  31. Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL, Peters JM (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161:281–294

    Article  PubMed  CAS  Google Scholar 

  32. Yamamoto S, Yoshida Y, Aoyagi M, Ohno K, Hirakawa K, Hamada H (2002) Reduced transduction efficiency of adenoviral vectors expressing human p53 gene by repeated transduction into glioma cells in vitro. Clin Cancer Res 8:913–921

    PubMed  CAS  Google Scholar 

  33. Fults D, Brockmeyer D, Tullous MW, Pedone CA, Cawthon RM (1992) p53 mutation and loss of heterozygosity on chromosomes 17 and 10 during human astrocytoma progression. Cancer Res 52:674–679

    PubMed  CAS  Google Scholar 

  34. Natsume A, Ishii D, Wakabayashi T, Tsuno T, Hatano H, Mizuno M, Yoshida J (2005) IFN-β down-regulates the expression of DNA repair gene MGMT and sensitizes resistant glioma cells to temozolomide. Cancer Res 65:7573–7579

    PubMed  CAS  Google Scholar 

  35. Terada Y, Tatsuka M, Suzuki F, Yasuda Y, Fujita S, Otsu M (1998) AIM-1: a mammalian midbody-associated protein required for cytokinesis. EMBO J 17:667–676

    Article  PubMed  CAS  Google Scholar 

  36. Cox LS, Lane DP (1995) Tumor suppressors, kinases, clamps how p53 regulates the cell cycle in response to DNA damage. BioEssays 17:501–508

    Article  PubMed  CAS  Google Scholar 

  37. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and CADD45 is detective in ataxia-telangiectasia. Cell 71:587–597

    Article  PubMed  CAS  Google Scholar 

  38. Lanni JS, Jacks T (1998) Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 18:1055–1064

    PubMed  CAS  Google Scholar 

  39. Minn AJ, Boise LH, Thompson CB (1996) Expression Bcl-x and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Dev 10:2621–2631

    Article  PubMed  CAS  Google Scholar 

  40. Harvey M, Sands AT, Weiss RS, Hegi ME, Wiseman RW, Pantazis P, Giovanella BC, Tainsky MA, Bradley A, Donehower LA (1993) In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8:2457–2467

    PubMed  CAS  Google Scholar 

  41. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B (1999) 14–3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature (London) 401:616–620

    Article  CAS  Google Scholar 

  42. Vogel C, Kienitz A, Hofmann I, Müller R, Bastians H (2004) Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene 23:6845–6853

    Article  PubMed  CAS  Google Scholar 

  43. Huang MC, Kubo O, Tajika Y (1996) A clinico-immunohistochemical study of giant cell glioblastoma. Noshuyo Byori 13:11–16

    PubMed  CAS  Google Scholar 

  44. Katayama H, Brinkley WR, Sen S (2003) The Aurora kinases: role in cell transformation and tumorigenesis. Cancer Metastasis Rev 22(4):451–464

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Hirofumi Hamada, Department of Molecular Medicine, Sapporo Medical University, for providing adenoviral vectors. This manuscript was supported in part by Grants-in-Aid for Scientific Research 16209044 and 16390408 from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuno, T., Natsume, A., Katsumata, S. et al. Inhibition of Aurora-B function increases formation of multinucleated cells in p53 gene deficient cells and enhances anti-tumor effect of temozolomide in human glioma cells. J Neurooncol 83, 249–258 (2007). https://doi.org/10.1007/s11060-007-9335-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9335-1

Keywords

Navigation