Skip to main content
Log in

Novel anti-invasive properties of a Fascin1 inhibitor on colorectal cancer cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Tumor invasion and metastasis involve processes in which actin cytoskeleton rearrangement induced by Fascin1 plays a crucial role. Indeed, Fascin1 has been found overexpressed in tumors with worse prognosis. Migrastatin and its analogues target Fascin1 and inhibit its activity. However, there is need for novel and smaller Fascin1 inhibitors. The aim of this study was to assess the effect of compound G2 in colorectal cancer cell lines and compare it to migrastatin in in vitro and in vivo assays. Molecular modeling, actin-bundling, cell viability, inmunofluorescence, migration, and invasion assays were carried out in order to test anti-migratory and anti-invasive properties of compound G2. In addition, the in vivo effect of compound G2 was evaluated in a zebrafish model of invasion. HCT-116 cells exhibited the highest Fascin1 expression from eight tested colorectal cancer cell lines. Compound G2 showed important inhibitory effects on actin bundling, filopodia formation, migration, and invasion in different cell lines. Moreover, compound G2 treatment resulted in significant reduction of invasion of DLD-1 overexpressing Fascin1 and HCT-116 in zebrafish larvae xenografts; this effect being less evident in Fascin1 known-down HCT-116 cells. This study proves, for the first time, the in vitro and in vivo anti-tumoral activity of compound G2 on colorectal cancer cells and guides to design improved compound G2-based Fascin1 inhibitors.

Key messages

• Fascin is crucial for tumor invasion and metastasis and is overexpressed in bad prognostic tumors.

• Several adverse tumors overexpress Fascin1 and lack targeted therapy.

• Anti-fascin G2 is for the first time evaluated in colorectal carcinoma and compared with migrastatin.

• Filopodia formation, migration activity, and invasion in vitro and in vivo assays were performed.

• G2 blocks actin structures, migration, and invasion of colorectal cancer cells as fascin-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen L, Yang S, Jakoncic J, Zhang JJ, Huang XY (2010) Migrastatin analogues target fascin to block tumour metastasis. Nature 464(7291):1062–1066

    Article  CAS  Google Scholar 

  2. Machesky LM, Li A (2010) Fascin: Invasive filopodia promoting metastasis. Commun Integr Biol 3(3):263–270

    Article  Google Scholar 

  3. Hashimoto Y, Kim DJ, Adams JC (2011) The roles of fascins in health and disease. J Pathol 224(3):289–300

    Article  CAS  Google Scholar 

  4. Hashimoto Y, Skacel M, Adams JC (2005) Roles of fascin in human carcinoma motility and signaling: prospects for a novel biomarker? Int J Biochem Cell Biol 37(9):1787–1804

    Article  CAS  Google Scholar 

  5. Omran OM, Al Sheeha M (2015) Cytoskeletal focal adhesion proteins Fascin-1 and Paxillin are predictors of malignant progression and poor prognosis in human breast cancer. J Environ Pathol Toxicol Oncol 34(3):201–212

    Article  Google Scholar 

  6. Tan VY, Lewis SJ, Adams JC, Martin RM (2013) Association of fascin-1 with mortality, disease progression and metastasis in carcinomas: a systematic review and meta-analysis. BMC Med 11:52

    Article  CAS  Google Scholar 

  7. Conesa-Zamora P, García-Solano J, García-García F, Turpin Mdel C, Trujillo-Santos J, Torres-Moreno D, Pérez-Guillermo M (2013) Expression profiling shows differential molecular pathways and provides potential new diagnostic biomarkers for colorectal serrated adenocarcinoma. Int J Cancer 132(2):297–307

    Article  CAS  Google Scholar 

  8. García-Solano J, Conesa-Zamora P, Carbonell P, Trujillo-Santos J, Torres-Moreno DD, Pagán-Gómez I, Rodríguez-Braun E, Pérez-Guillermo M (2012a) Colorectal serrated adenocarcinoma shows a different profile of oncogene mutations, MSI status and DNA repair protein expression compared to conventional and sporadic MSI-H carcinomas. Int J Cancer 131(8):1790–1799

    Article  Google Scholar 

  9. García-Solano J, Pérez-Guillermo M, Conesa-Zamora P, Acosta-Ortega J, Trujillo-Santos J, Cerezuela-Fuentes P, Mäkinen MJ (2010) Clinicopathologic study of 85 colorectal serrated adenocarcinomas: further insights into the full recognition of a new subset of colorectal carcinoma. Hum Pathol 41(10):1359–1368

    Article  Google Scholar 

  10. García-Solano J, Conesa-Zamora P, Trujillo-Santos J, Mäkinen MJ, Pérez-Guillermo M (2011) Tumour budding and other prognostic pathological features at invasive margins in serrated colorectal adenocarcinoma: a comparative study with conventional carcinoma. Histopathology 59(6):1046–1056

    Article  Google Scholar 

  11. García-Solano J, Conesa-Zamora P, Trujillo-Santos J, Torres-Moreno D, Mäkinen MJ, Pérez-Guillermo M (2012b) Immunohistochemical expression profile of β-catenin, E-cadherin, P-cadherin, laminin-5γ2 chain, and SMAD4 in colorectal serrated adenocarcinoma. Hum Pathol 43(7):1094–1102

    Article  Google Scholar 

  12. Stefanius K, Ylitalo L, Tuomisto A, Kuivila R, Kantola T, Sirniö P, Karttunen TJ, Mäkinen MJ (2011) Frequent mutations of KRAS in addition to BRAF in colorectal serrated adenocarcinoma. Histopathology 58(5):679–692

    Article  Google Scholar 

  13. Cao HH, Zheng CP, Wang SH, Wu JY, Shen JH, Xu XE, Fu JH, Wu ZY, Li EM, Xu LY (2014) A molecular prognostic model predicts esophageal squamous cell carcinoma prognosis. PLoS One 9(8):e106007

    Article  Google Scholar 

  14. Jones RP, Bird NT, Smith RA, Palmer DH, Fenwick SW, Poston GJ, Malik HZ (2015) Prognostic molecular markers in resected extrahepatic biliary tract cancers; a systematic review and meta-analysis of immunohistochemically detected biomarkers. Biomark Med 9(8):763–775

    Article  CAS  Google Scholar 

  15. Li A, Morton JP, Ma Y, Karim SA, Zhou Y, Faller WJ, Woodham EF, Morris HT, Stevenson RP, Juin A et al (2014) Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology 146(5):1386–1396.e1381-1317

    Article  CAS  Google Scholar 

  16. Rodrigues PC, Sawazaki-Calone I, Ervolino de Oliveira C, Soares Macedo CC, Dourado MR, Cervigne NK, Miguel MC, Ferreira do Carmo A, Lambert DW, Graner E (2017) Fascin promotes migration and invasion and is a prognostic marker for oral squamous cell carcinoma. Oncotarget 8(43):74736–74754

    Article  Google Scholar 

  17. Stewart CJ, Crook ML (2015) Fascin expression in undifferentiated and dedifferentiated endometrial carcinoma. Hum Pathol 46(10):1514–1520

    Article  CAS  Google Scholar 

  18. Zhao W, Gao J, Wu J, Liu QH, Wang ZG, Li HL, Xing LH (2015) Expression of Fascin-1 on human lung cancer and paracarcinoma tissue and its relation to clinicopathological characteristics in patients with lung cancer. Onco Targets Ther 8:2571–2576

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gaul C, Njardarson JT, Shan D, Dorn DC, Wu KD, Tong WP, Huang XY, Moore MA, Danishefsky SJ (2004) The migrastatin family: discovery of potent cell migration inhibitors by chemical synthesis. J Am Chem Soc 126(36):11326–11337

    Article  CAS  Google Scholar 

  20. Han S, Huang J, Liu B, Xing B, Bordeleau F, Reinhart-King CA et al (2016) Improving fascin inhibitors to block tumor cell migration and metastasis. Mol Oncol 10(7):966–980

    Article  CAS  Google Scholar 

  21. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  Google Scholar 

  22. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges Y1 - 1980 Y2 - 1980. Tetrahedron 36(22):3219–3228 M1 - Generic

    Article  CAS  Google Scholar 

  23. Huang J, Dey R, Wang Y, Jakoncic J, Kurinov I, Huang XY (2018) Structural insights into the induced-fit inhibition of Fascin by a small-molecule inhibitor. J Mol Biol 430(9):1324–1335

    Article  CAS  Google Scholar 

  24. Sánchez-Linares I, Pérez-Sánchez H, Cecilia JM, García JM (2012) High-throughput parallel blind virtual screening using BINDSURF. BMC Bioinformatics 13(Suppl 14):S13

    Article  Google Scholar 

  25. Nurmenniemi S, Sinikumpu T, Alahuhta I, Salo S, Sutinen M, Santala M, Risteli J, Nyberg P, Salo T (2009) A novel organotypic model mimics the tumor microenvironment. Am J Pathol 175(3):1281–1291

    Article  CAS  Google Scholar 

  26. Åström P, Heljasvaara R, Nyberg P, Al-Samadi A, Salo T (2018) Human tumor tissue-based 3D in vitro invasion assays. Methods Mol Biol 1731:213–221

    Article  Google Scholar 

  27. Jelassi B, Chantôme A, Alcaraz-Pérez F, Baroja-Mazo A, Cayuela ML, Pelegrin P, Surprenant A, Roger S (2011) P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness. Oncogene 30(18):2108–2122

    Article  CAS  Google Scholar 

  28. Albini A (1998) Tumor and endothelial cell invasion of basement membranes. The matrigel chemoinvasion assay as a tool for dissecting molecular mechanisms. Pathol Oncol Res 4(3):230–241

    Article  CAS  Google Scholar 

  29. Stevenson RP, Veltman D, Machesky LM (2012) Actin-bundling proteins in cancer progression at a glance. J Cell Sci 125(Pt 5):1073–1079

    Article  CAS  Google Scholar 

  30. Esnakula AK, Ricks-Santi L, Kwagyan J, Kanaan YM, DeWitty RL, Wilson LL, Gold B, Frederick WA, Naab TJ (2014) Strong association of fascin expression with triple negative breast cancer and basal-like phenotype in African-American women. J Clin Pathol 67(2):153–160

    Article  Google Scholar 

  31. García-Solano J, García-Solano ME, Torres-Moreno D, Carbonell P, Trujillo-Santos J, Pérez-Guillermo M, Conesa-Zamora P (2016) Biomarkers for the identification of precursor polyps of colorectal serrated adenocarcinomas. Cell Oncol (Dordr) 39(3):243–252

    Article  Google Scholar 

  32. Ghebeh H, Al-Khaldi S, Olabi S, Al-Dhfyan A, Al-Mohanna F, Barnawi R et al (2014) Fascin is involved in the chemotherapeutic resistance of breast cancer cells predominantly via the PI3K/Akt pathway. Br J Cancer 111(8):1552–1561

    Article  CAS  Google Scholar 

  33. Kanda Y, Kawaguchi T, Kuramitsu Y, Kitagawa T, Kobayashi T, Takahashi N, Tazawa H, Habelhah H, Hamada J, Kobayashi M, Hirahata M, Onuma K, Osaki M, Nakamura K, Kitagawa T, Hosokawa M, Okada F (2014) Fascin regulates chronic inflammation-related human colon carcinogenesis by inhibiting cell anoikis. Proteomics 14(9):1031–1041

    Article  CAS  Google Scholar 

  34. Rodríguez-Pinilla SM, Sarrió D, Honrado E, Hardisson D, Calero F, Benitez J, Palacios J (2006) Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res 12(5):1533–1539

    Article  Google Scholar 

  35. Wang CQ, Tang CH, Chang HT, Li XN, Zhao YM, Su CM, Hu GN, Zhang T, Sun XX, Zeng Y, du Z, Wang Y, Huang BF (2016) Fascin-1 as a novel diagnostic marker of triple-negative breast cancer. Cancer Med 5(8):1983–1988

    Article  CAS  Google Scholar 

  36. Salo T, Dourado MR, Sundquist E, Apu EH, Alahuhta I, Tuomainen K, Vasara J, Al-Samadi A (2018) Organotypic three-dimensional assays based on human leiomyoma-derived matrices. Philos Trans R Soc Lond Ser B Biol Sci 373(1737):20160482

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the e-infrastructure program of the Research Council of Norway, and the supercomputer center of UiT, the Arctic University of Norway, and by the supercomputing infrastructure of Poznan Supercomputing Center.

Funding

This project received grants from Instituto de Salud Carlos III (Spanish Ministry of Health) and FEDER funds (ref: PI12/1232 and PI15/00626), Spanish Ministry of Economy and Competitiveness MINECO (CTQ2017-87974-R), and by the Fundación Séneca del Centro de Coordinación de la Investigación de la Región de Murcia under Projects 18946/JLI/13 and 20646/JLI/18. BAG belongs to the “Programa de Doctorado en Ciencias de la Salud, Universidad Católica de Murcia (UCAM)” and holds a grant of the UCAM. PCR was supported by Finnish Cultural Foundation Grant (2017-2018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silvia Montoro-García or Pablo Conesa-Zamora.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 8815 kb)

ESM 2

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montoro-García, S., Alburquerque-González, B., Bernabé-García, Á. et al. Novel anti-invasive properties of a Fascin1 inhibitor on colorectal cancer cells. J Mol Med 98, 383–394 (2020). https://doi.org/10.1007/s00109-020-01877-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01877-z

Keywords

Navigation