Skip to main content
Log in

Dietary phytol reduces clinical symptoms in experimental autoimmune encephalomyelitis (EAE) at least partially by modulating NOX2 expression

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system. We investigated the effect of phytol in an animal model of MS, experimental autoimmune encephalomyelitis (EAE), as phytol, a plant-derived diterpene alcohol, exerts anti-inflammatory and redox-protective actions. We observed a significant amelioration of clinical symptoms in EAE C57BL/6N mice fed prophylactically with a phytol-enriched diet. Demyelination, DNA damage, and infiltration of immune cells, specifically TH1 cells, into the central nervous system were reduced in phytol-fed EAE mice. Furthermore, phytol reduced T-cell proliferation ex vivo. Phytanic acid — a metabolite of phytol — also reduced T-cell proliferation, specifically that of TH1 cells. Additionally, phytol-enriched diet increased the mRNA expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 2 in white blood cells in the lymph nodes. Accordingly, phytol lost its anti-inflammatory effects in chimeric EAE C57BL/6N mice whose peripheral cells lack NOX2, indicating that phytol mediates its effects in peripheral cells via NOX2. Moreover, the effects of phytol on T-cell proliferation were also NOX2-dependent. In contrast, the T-cell subtype alterations and changes in proliferation induced by phytanic acid, the primary metabolite of phytol, were NOX2-independent. In conclusion, phytol supplementation of the diet leads to amelioration of EAE pathology in both a NOX2-dependent and a NOX2-independent manner via yet unknown mechanisms.

Key messages

  • Phytol diet ameliorates EAE pathology.

  • Phytol diet reduces demyelination, immune cell infiltration, and T-cell proliferation.

  • Phytol diet increases NOX2 mRNA expression in white blood cells in the lymph nodes.

  • Phytol mediates its effects in peripheral cells via NOX2.

  • Effects of phytol on T-cell proliferation were NOX2-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

8-OHG:

8-Hydroxyguanosine

AF:

Alexa fluor

ANOVA:

Analysis of variance

APC:

Antigen-presenting cell

AUC:

Area under the curve

BMT:

Bone marrow transition

BrdU:

5-Bromo-2′-deoxyuridine

CFA:

Complete Freund’s adjuvant

CNS:

Central nervous system

CT:

Cycle threshold

DAPI:

4′,6-Diamidin-2-phenylindol

EAE:

Experimental autoimmune encephalomyelitis

FCS:

Fetal calf serum

FM:

Fluoromyelin

IFN:

Interferon

IL:

Interleukin

MACS:

Magnetic activated cell sorting

MOG:

Myelin oligodendrocyte protein

MRM:

Multiple reaction monitoring

MS:

Multiple sclerosis

NADPH:

Nicotinamide adenine dinucleotide phosphate

NOX2:

NADPH oxidase 2

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

PH:

Phytol

PPIA:

Peptidylpropyl isomerase A

PTX:

Pertussis toxin

ROS:

Reactive oxygen species

RR-MS:

Relapse-remitting multiple sclerosis

SEM:

Standard error of the mean

SPF:

Specific pathogen-free

ST:

Standard

WBCs:

White blood cells

WT:

Wild type

References

  1. Hoglund RA, Maghazachi AA (2014) Multiple sclerosis and the role of immune cells. World J Exp Med 4(3):27–37

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9(6):393–407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wu F, Cao W, Yang Y, Liu A (2010) Extensive infiltration of neutrophils in the acute phase of experimental autoimmune encephalomyelitis in C57BL/6 mice. Histochem Cell Biol 133(3):313–322

    Article  PubMed  CAS  Google Scholar 

  4. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH (2010) T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 162(1):1–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wanders RJ, Komen J, Ferdinandusse S (2011) Phytanic acid metabolism in health and disease. Biochim Biophys Acta 1811(9):498–507

    Article  PubMed  CAS  Google Scholar 

  6. Silva RO, Sousa FB, Damasceno SR, Carvalho NS, Silva VG, Oliveira FR, Sousa DP, Aragao KS, Barbosa AL, Freitas RM, Medeiros JV (2013) Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fundam Clin Pharmacol 28:455–464

    Article  PubMed  CAS  Google Scholar 

  7. Hultqvist M, Olofsson P, Gelderman KA, Holmberg J, Holmdahl R (2006) A new arthritis therapy with oxidative burst inducers. PLoS Med 3(9):e348. https://doi.org/10.1371/journal.pmed.0030348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sareila O, Kelkka T, Pizzolla A, Hultqvist M, Holmdahl R (2011) NOX2 complex-derived ROS as immune regulators. Antioxid Redox Signal 15(8):2197–2208

    Article  PubMed  CAS  Google Scholar 

  9. Gelderman KA, Hultqvist M, Holmberg J, Olofsson P, Holmdahl R (2006) T cell surface redox levels determine T cell reactivity and arthritis susceptibility. Proc Natl Acad Sci U S A 103(34):12831–12836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Shakya AK, Kumar A, Holmdahl R, Nandakumar KS (2016) Macrophage derived reactive oxygen species protects against autoimmune priming with a defined polymeric adjuvant. Immunology 147(1):125–132

    Article  PubMed  CAS  Google Scholar 

  11. Kraaij MD, Savage ND, van der Kooij SW, Koekkoek K, Wang J, van den Berg JM, Ottenhoff TH, Kuijpers TW, Holmdahl R, van Kooten C, Gelderman KA (2010) Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc Natl Acad Sci U S A 107(41):17686–17691

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schiffmann S, Weigert A, Mannich J, Eberle M, Birod K, Haussler A, Ferreiros N, Schreiber Y, Kunkel H, Grez M, Weichand B, Brune B, Pfeilschifter W, Nusing R, Niederberger E, Grosch S, Scholich K, Geisslinger G (2014) PGE2/EP4 signaling in peripheral immune cells promotes development of experimental autoimmune encephalomyelitis. Biochem Pharmacol 87(4):625–635

    Article  PubMed  CAS  Google Scholar 

  13. Schiffmann S, Ferreiros N, Birod K, Eberle M, Schreiber Y, Pfeilschifter W, Ziemann U, Pierre S, Scholich K, Grosch S, Geisslinger G (2012) Ceramide synthase 6 plays a critical role in the development of experimental autoimmune encephalomyelitis. J Immunol 188(11):5723–5733

    Article  PubMed  CAS  Google Scholar 

  14. Schiffmann S, Ziebell S, Sandner J, Birod K, Deckmann K, Hartmann D, Rode S, Schmidt H, Angioni C, Geisslinger G, Grosch S (2010) Activation of ceramide synthase 6 by celecoxib leads to a selective induction of C16:0-ceramide. Biochem Pharmacol 80(11):1632–1640

    Article  PubMed  CAS  Google Scholar 

  15. Eberle M, Ebel P, Wegner MS, Mannich J, Tafferner N, Ferreiros N, Birod K, Schreiber Y, Krishnamoorthy G, Willecke K, Geisslinger G, Grosch S, Schiffmann S (2014) Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent. Biochem Pharmacol 92(2):326–335

    Article  PubMed  CAS  Google Scholar 

  16. Barthelmes J, de Bazo AM, Pewzner-Jung Y, Schmitz K, Mayer CA, Foerch C, Eberle M, Tafferner N, Ferreiros N, Henke M, Geisslinger G, Futerman AH, Grosch S, Schiffmann S (2015) Lack of ceramide synthase 2 suppresses the development of experimental autoimmune encephalomyelitis by impairing the migratory capacity of neutrophils. Brain Behav Immun 46:280–292

    Article  PubMed  CAS  Google Scholar 

  17. Tafferner N, Barthelmes J, Eberle M, Ulshofer T, Henke M, deBruin N, Mayer CA, Foerch C, Geisslinger G, Parnham MJ, Schiffmann S (2016) Alpha-methylacyl-CoA racemase deletion has mutually counteracting effects on T-cell responses, associated with unchanged course of EAE. Eur J Immunol 46(3):570–581

    Article  PubMed  CAS  Google Scholar 

  18. Jackson SH, Devadas S, Kwon J, Pinto LA, Williams MS (2004) T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat Immunol 5(8):818–827

    Article  PubMed  CAS  Google Scholar 

  19. Olofsson P, Nerstedt A, Hultqvist M, Nilsson EC, Andersson S, Bergelin A, Holmdahl R (2007) Arthritis suppression by NADPH activation operates through an interferon-beta pathway. BMC Biol 5:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Holmdahl R, Sareila O, Pizzolla A, Winter S, Hagert C, Jaakkola N, Kelkka T, Olsson LM, Wing K, Backdahl L (2013) Hydrogen peroxide as an immunological transmitter regulating autoreactive T cells. Antioxid Redox Signal 18(12):1463–1474

    Article  PubMed  CAS  Google Scholar 

  21. Belikov AV, Schraven B, Simeoni L (2015) T cells and reactive oxygen species. J Biomed Sci 22:85. https://doi.org/10.1186/s12929-015-0194-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Richards SM, Clark EA (2009) BCR-induced superoxide negatively regulates B-cell proliferation and T-cell-independent type 2 Ab responses. Eur J Immunol 39(12):3395–3403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kruska N, Reiser G (2011) Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40. Neurobiol Dis 43(2):465–472

    Article  PubMed  CAS  Google Scholar 

  24. Verma MK, Sadasivuni MK, Yateesh AN, Neelima K, Mrudula S, Reddy M, Smitha R, Biswas S, Chandravanshi B, Pallavi PM, Oommen AM, Jagannath MR, Somesh BB (2014) Activation of GPR40 attenuates chronic inflammation induced impact on pancreatic beta-cells health and function. BMC Cell Biol 15:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sartorius T, Drescher A, Panse M, Lastovicka P, Peter A, Weigert C, Kostenis E, Ullrich S, Haring HU (2015) Mice lacking free fatty acid receptor 1 (GPR40/FFAR1) are protected against conjugated linoleic acid-induced fatty liver but develop inflammation and insulin resistance in the brain. Cell Physiol Biochem 35(6):2272–2284

    Article  PubMed  CAS  Google Scholar 

  26. Powers JM, Kenjarski TP, Moser AB, Moser HW (1999) Cerebellar atrophy in chronic rhizomelic chondrodysplasia punctata: a potential role for phytanic acid and calcium in the death of its Purkinje cells. Acta Neuropathol 98(2):129–134

    Article  PubMed  CAS  Google Scholar 

  27. Kahlert S, Schonfeld P, Reiser G (2005) The Refsum disease marker phytanic acid, a branched chain fatty acid, affects Ca2+ homeostasis and mitochondria, and reduces cell viability in rat hippocampal astrocytes. Neurobiol Dis 18(1):110–118

    Article  PubMed  CAS  Google Scholar 

  28. Wanders RJ, Komen JC (2007) Peroxisomes, Refsum’s disease and the alpha- and omega-oxidation of phytanic acid. Biochem Soc Trans 35(Pt 5):865–869

    Article  PubMed  CAS  Google Scholar 

  29. Ellinghaus P, Wolfrum C, Assmann G, Spener F, Seedorf U (1999) Phytanic acid activates the peroxisome proliferator-activated receptor alpha (PPARalpha) in sterol carrier protein 2−/ sterol carrier protein x-deficient mice. J Biol Chem 274(5):2766–2772

    Article  PubMed  CAS  Google Scholar 

  30. Yang Y, Gocke AR, Lovett-Racke A, Drew PD, Racke MK (2008) PPAR alpha regulation of the immune response and autoimmune encephalomyelitis. PPAR Res 2008:546753

    PubMed  PubMed Central  Google Scholar 

  31. Xu J, Racke MK, Drew PD (2007) Peroxisome proliferator-activated receptor-alpha agonist fenofibrate regulates IL-12 family cytokine expression in the CNS: relevance to multiple sclerosis. J Neurochem 103(5):1801–1810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Choi JM, Bothwell AL (2012) The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Mol Cells 33(3):217–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Duran-Struuck R, Dysko RC (2009) Principles of bone marrow transplantation (BMT): providing optimal veterinary and husbandry care to irradiated mice in BMT studies. J Am Assoc Lab Anim Sci: JAALAS 48(1):11–22

    PubMed  CAS  Google Scholar 

  34. Nayernia Z, Jaquet V, Krause KH (2014) New insights on NOX enzymes in the central nervous system. Antioxid Redox Signal 20(17):2815–2837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Landesoffensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz (LOEWE) and the Zentrum: Translationale Medizin und Pharmakologie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Schiffmann.

Ethics declarations

Conflict of interest

MJP has been a consultant to Leo Pharma a/s and Xellia Pharmaceuticals. All the other authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PPTX 250 kb)

ESM 2

(PPTX 248 kb)

ESM 3

(PPTX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blum, L., Tafferner, N., Spring, I. et al. Dietary phytol reduces clinical symptoms in experimental autoimmune encephalomyelitis (EAE) at least partially by modulating NOX2 expression. J Mol Med 96, 1131–1144 (2018). https://doi.org/10.1007/s00109-018-1689-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-1689-7

Keywords

Navigation