Skip to main content

Advertisement

Log in

Extensive infiltration of neutrophils in the acute phase of experimental autoimmune encephalomyelitis in C57BL/6 mice

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

To determine the possible involvement of neutrophils in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), we examined their infiltration pattern during the course of MOG35–55-induced EAE in the C57BL/6 mice. Using immunohistochemistry and flow cytometry, we found that the number of neutrophils was significantly increased during onset of disease, remained high at the peak stage and dramatically declined thereafter. Moreover, dual labeling provided anatomical evidence of a prominent accumulation of neutrophils in the center and vicinity of lesion areas of demyelination, axonal loss or axonal degeneration at early stages of EAE. These observations provide evidence that neutrophils are one of the major sources of inflammatory cells to initiate EAE, which suggest that neutrophils may contribute to demyelination and axonal degeneration in the acute phase of EAE and play a greater role than previously thought in the pathogenesis of EAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen SJ, Baker D, O’Neill JK, Davison AN, Turk JL (1993) Isolation and characterization of cells infiltrating the spinal cord during the course of chronic relapsing experimental allergic encephalomyelitis in the Biozzi AB/H mouse. Cell Immunol 146:335–350

    Article  CAS  PubMed  Google Scholar 

  • Altin JG, Sloan EK (1997) The role of CD45 and CD45-associated molecules in T cell activation. Immunol Cell Biol 75:430–445

    Article  CAS  PubMed  Google Scholar 

  • Batten M, Li J, Yi S, Kljavin NM, Danilenko DM, Lucas S, Lee J, de Sauvage FJ, Ghilardi N (2006) Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 7:929–936

    Article  CAS  PubMed  Google Scholar 

  • Beaufays J, Adam B, Menten-Dedoyart C, Fievez L, Grosjean A, Decrem Y, Prévôt PP, Santini S, Brasseur R, Brossard M, Vanhaeverbeek M, Bureau F, Heinen E, Lins L, Vanhamme L, Godfroid E (2008) Ir-LBP, an ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function. PLoS One 3:e3987

    Article  PubMed  Google Scholar 

  • Brown A, McFarlin DE, Raine CS (1982) Chronologic neuropathology of relapsing experimental allergic encephalomyelitis in the mouse. Lab Invest 46:171–185

    CAS  PubMed  Google Scholar 

  • Bruck W (2005) The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J Neurol 252(Suppl 5):v3–v9

    Article  PubMed  Google Scholar 

  • Butcher EC (1991) Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67:1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953–1971

    Article  PubMed  Google Scholar 

  • Gutcher I, Urich E, Wolter K, Prinz M, Becher B (2006) Interleukin 18-independent engagement of interleukin 18 receptor-alpha is required for autoimmune inflammation. Nat Immunol 7:946–953

    Article  CAS  PubMed  Google Scholar 

  • Hartung HP, Kieseier BC, Hemmer B (2005) Purely systemically active anti-inflammatory treatments are adequate to control multiple sclerosis. J Neurol 252(Suppl 5):v30–v37

    Article  PubMed  Google Scholar 

  • Hemmer B, Archelos JJ, Hartung HP (2002) New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev 3:291–301

    CAS  Google Scholar 

  • Javed A, Reder AT (2006) Therapeutic role of beta-interferons in multiple sclerosis. Pharmacol Ther 110:35–56

    Article  CAS  PubMed  Google Scholar 

  • Kelly MN, Kolls JK, Happel K, Schwartzman JD, Schwarzenberger P, Combe C, Moretto M, Khan IA (2005) Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect Immun 73:617–621

    Article  CAS  PubMed  Google Scholar 

  • Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177:566–573

    CAS  PubMed  Google Scholar 

  • Lafaille JJ (1998) The role of helper T cell subsets in autoimmune diseases. Cytokine Growth Factor Rev 9:139–151

    Article  CAS  PubMed  Google Scholar 

  • Lampert P (1967) Electron microscopic studies on ordinary and hyperacute experimental allergic encephalomyelitis. Acta Neuropathol 9:99–126

    Article  CAS  PubMed  Google Scholar 

  • Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  CAS  PubMed  Google Scholar 

  • Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelin. Nat Genet 33:366–374

    Article  CAS  PubMed  Google Scholar 

  • Levine S (1974) Hyperacute, neutrophilic, and localized forms of experimental allergic encephalomyelitis: a review. Acta Neuropathol 28:179–189

    Article  CAS  PubMed  Google Scholar 

  • Maatta JA, Eralinna JP, Roytta M, Salmi AA, Hinkkanen AE (1996) Physical state of the neuroantigen in adjuvant emulsions determines encephalitogenic status in the BALB/c mouse. J Immunol Methods 190:133–141

    Article  CAS  PubMed  Google Scholar 

  • Maatta JA, Sjoholm UR, Nygardas PT, Salmi AA, Hinkkanen AE (1998) Neutrophils secreting tumor necrosis factor alpha infiltrate the central nervous system of BALB/c mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 90:162–175

    Article  CAS  PubMed  Google Scholar 

  • Mayer-Scholl A, Averhoff P, Zychlinsky A (2004) How do neutrophils and pathogens interact? Curr Opin Microbiol 7:62–66

    Article  CAS  PubMed  Google Scholar 

  • McColl SR, Staykova MA, Wozniak A, Fordham S, Bruce J, Willenborg DO (1998) Treatment with anti-granulocyte antibodies inhibits the effector phase of experimental autoimmune encephalomyelitis. J Immunol 161:6421–6426

    CAS  PubMed  Google Scholar 

  • Nyland H, Mork S, Matre R (1982) In situ characterization of mononuclear cell infiltrates in lesions of multiple sclerosis. Neuropathol Appl Neurobiol 8:403–411

    Article  CAS  PubMed  Google Scholar 

  • Okuda Y, Okuda M, Bernard CA (2002) Gender does not influence the susceptibility of C57BL/6 mice to develop chronic experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein. Immunol Lett 81:25–29

    Article  CAS  PubMed  Google Scholar 

  • Pagany M, Jagodic M, Bourquin C, Olsson T, Linington C (2003) Genetic variation in myelin oligodendrocyte glycoprotein expression and susceptibility to experimental autoimmune encephalomyelitis. J Neuroimmunol 139:1–8

    Article  CAS  PubMed  Google Scholar 

  • Raine CS (1984) Biology of disease. Analysis of autoimmune demyelination: its impact upon multiple sclerosis. Lab Invest 50:608–635

    CAS  PubMed  Google Scholar 

  • Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203

    Article  CAS  PubMed  Google Scholar 

  • Shin K, Nigrovic PA, Crish J, Boilard E, McNeil HP, Larabee KS, Adachi R, Gurish MF, Gobezie R, Stevens RL, Lee DM (2009) Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. J Immunol 182:647–656

    CAS  PubMed  Google Scholar 

  • Stockinger B, Veldhoen M, Martin B (2007) Th17 T cells: linking innate and adaptive immunity. Semin Immunol 19:353–361

    Article  CAS  PubMed  Google Scholar 

  • Suen WE, Bergman CM, Hjelmstrom P, Ruddle NH (1997) A critical role for lymphotoxin in experimental allergic encephalomyelitis. J Exp Med 186:1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Swanborg RH (1995) Experimental autoimmune encephalomyelitis in rodents as a model for human demyelinating disease. Clinical Immunol Immunopathol 77:4–13

    Article  CAS  Google Scholar 

  • Traugott U, Shevach E, Chiba J, Stone SH, Raine CS (1982) Chronic relapsing experimental allergic encephalomyelitis: identification and dynamics of T and B cells within the central nervous system. Cell Immunol 68:261–275

    Article  CAS  PubMed  Google Scholar 

  • von Vietinghoff S, Ley K (2008) Homeostatic regulation of blood neutrophil counts. J Immunol 181:5183–5188

    Google Scholar 

  • Wang Z, Hong J, Sun W, Xu G, Li N, Chen X, Liu A, Xu L, Sun B, Zhang JZ (2006) Role of IFN-gamma in induction of Foxp3 and conversion of CD4+ CD25− T cells to CD4+ Tregs. J Clin Invest 116:2434–2441

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (30671926) and Shanghai Commission of Science and Technology (06ZR14164). The authors would like to thank Taylor Guo for critical reading of the manuscript. We are grateful to Qi Zhang for help with excellent technical support on the EAE induction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailian Liu.

Additional information

F. Wu and W. Cao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, F., Cao, W., Yang, Y. et al. Extensive infiltration of neutrophils in the acute phase of experimental autoimmune encephalomyelitis in C57BL/6 mice. Histochem Cell Biol 133, 313–322 (2010). https://doi.org/10.1007/s00418-009-0673-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0673-2

Keywords

Navigation