Skip to main content
Log in

Metformin mediated reversal of epithelial to mesenchymal transition is triggered by epigenetic changes in E-cadherin promoter

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Epithelial-mesenchymal transition (EMT) is one of the key biological phenomena behind cancer and metastasis. Clinical studies suggest that patients undergoing metformin therapy are less predisposed to cancer but the underlying mechanism is far from clear. Given that metformin also acts as TGF-β inhibitor, we sought to explore whether and how metformin could modulate EMT in a cancer like microenvironment. Our data using human cell lines revealed that metformin induced a distinct change from stromal-shaped mesenchymal cells to cuboidal-shaped epithelial cells with upregulation of epithelial markers and mitigation of their invasive property. One of the key regulatory pathways, which intersect tumorigenesis and metformin activity, is AMPK. We demonstrated that metformin attenuates ERK signaling by activating AMPK pathway leading to suppression of Snail and Slug resulting in upregulation of crucial tumor suppressor gene E-cadherin. ChIP assay confirmed insufficient binding of repressors like Slug to the E-cadherin promoter. Further, our data revealed reduction in HDAC activity prompting hypomethylation of E-cadherin promoter thus reflecting an epigenetic modification. To expand the translational significance of the study we verified these findings in diabetic patients undergoing metformin treatment. To our knowledge this is the first report representing an inverse relationship of AMPK and ERK signaling axis in promoting mesenchymal to epithelial transition (MET) via re-expression of E-cadherin upon metformin treatment thus rationalizing lower incidence of cancer in metformin-administered patients.

Key message

  • Metformin promotes reversal of the epithelial-mesenchymal transition.

  • Metformin attenuates ERK signaling by activating AMP kinase.

  • Metformin induces hypomethylation of the E-cadherin gene promoter.

  • Epigenetic modification of the E-cadherin promoter was observed in leukocytes from diabetic subjects.

  • These findings provide a potential basis for decreased cancer incidence in metformin-treated subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hawley S, Gadalla AE, Olsen GS, Grahame Hardie D (2002) The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51(8):2420–2425

    Article  CAS  PubMed  Google Scholar 

  2. Libby G, Donnelly LA, Donnan PT (2009) New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32:1620–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 67:10804–10812

    Article  CAS  PubMed  Google Scholar 

  4. Plews RL, Mohd Yusof A, Wang C, Saji M, Zhang X, Chen CS, Ringel MD, Phay JE (2015) A novel dual AMPK activator/mTOR inhibitor inhibits thyroid cancer cell growth. J Clin Endocrinol Metab 100(5):E748–E756

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cufí S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Joven J, Menendez JA (2010) Metformin against TGFβ-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis. Cell Cycle 9(22):4461–4468

    Article  PubMed  Google Scholar 

  6. Sebolt-Leopold JS, English JM (2006) Mechanisms of drug inhibition of signalling molecules. Nature 441:457–462

    Article  CAS  PubMed  Google Scholar 

  7. Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen activated protein kinase cascade to treat cancer. Nat Rev Cancer 4:937–947

    Article  CAS  PubMed  Google Scholar 

  8. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22):3291–3310

    Article  CAS  PubMed  Google Scholar 

  9. De Herreros AG, Peiro S, Nassour M, Savagner P (2010) Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia 15(2):135–147

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pećina-Slaus N (2003) Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jeanes A, Gottardi CJ, Yap AS (2003) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27(55):6920–6929

    Article  Google Scholar 

  12. Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou PG, Evers BM, Zhou BP (2012) G9a interacts with snail and is critical for snail-mediated E-cadherin repression in human breast cancer. J Clin Invest 122(4):1469–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Banerjee P, Venkatachalam S, Mamidi MK, Bhonde R, Shankar K, Pal R (2015) Vitiligo patient-derived keratinocytes exhibit characteristics of normal wound healing via epithelial to mesenchymal transition. Exp Dermatol 24(5):391–393

    Article  CAS  PubMed  Google Scholar 

  14. Han W, Cauchi S, Herman JG, Spivack SD (2006) DNA methylation mapping by tag modified bisulfite genomic sequencing. Anal Biochem 355(1):50–61

    Article  CAS  PubMed  Google Scholar 

  15. Carpenter PM, Al-kuran RA, Theuer CP (2002) Paranuclear E-cadherin in gastric adenocarcinoma. Am J Clin Pathol 118(6):887–894

    Article  PubMed  Google Scholar 

  16. Chen C, Liu SS, Ip S, Wong LC, Ng TY, Ngan HYS (2003) E-cadherin expression is silenced by DNA methylation in cervical cancer cell lines and tumours. Eur J Cancer 39(4):517–523

    Article  CAS  PubMed  Google Scholar 

  17. Chao YL, Shepard CR, Wells A (2010) Breast carcinoma cells Re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 9:179

    Article  PubMed  PubMed Central  Google Scholar 

  18. Howard EW, Camm KD, Wong YC, Wang XH (2008) E-cadherin upregulation as a therapeutic goal in cancer treatment. Mini Rev Med Chem 8(5):496–518

    Article  CAS  PubMed  Google Scholar 

  19. Lin YC, Lee YC, Li LH, Cheng CJ, Yang RB (2014) Tumor suppressor SCUBE2 inhibits breast-cancer cell migration and invasion through the reversal of epithelial-mesenchymal transition. J Cell Sci 127:85–100

    Article  PubMed  Google Scholar 

  20. Austin P, Freeman SA, Gray C (2013) The invasion inhibitor sarasinoside A1 reverses mesenchymal tumor transformation in an E-cadherin-independent manner. Mol Cancer Res 11(5):530–540

    Article  CAS  PubMed  Google Scholar 

  21. Banerjee P, Dutta S, Pal R (2015) Dysregulation of Wnt-signaling and a candidate set of miRNAs underlie the effect of metformin on neural crest cell development. Stem Cells. doi:10.1002/stem.2245

    PubMed  Google Scholar 

  22. Buijs JT, Rentsch C, van der Horst G (2007) BMP7, a putative regulator of epithelial homeostasis in the human prostate, is a potent inhibitor of prostate cancer bone metastasis in vivo. Am J Pathol 171(3):1047–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan W, Cao QJ, Arenas RB, Bentley B, Shao R (2010) GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J Biol Chem 285(18):14042–14051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sheng W, Wang G, La Pierre DP (2006) Versican mediates mesenchymal – epithelial transition. Mol Biol Cell 17(4):2009–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sarkar S, Abujamra AL, Loew JE, Forman LW, Perrine SP, Faller DV (2011) Histone deacetylase inhibitors reverse CpG methylation by regulating DNMT1 through ERK signaling. Anticancer Res 31(9):2723–2732

    CAS  PubMed  Google Scholar 

  26. Peinado H, Ballestar E, Esteller M, Cano A (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24(1):306–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Law ME, Corsino PE, Jahn SC, Davis BJ, Chen S, Patel B, Pham K, Lu J, Sheppard B, Norgaard P et al (2013) Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms. Oncogene 32(10):1316–1329

  28. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A (2003) Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of β-catenin signaling, slug, and MAPK. J Cell Biol 163(4):847–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Das S, Becker BN, Hoffmann FM, Mertz JE (2009) Complete reversal of epithelial to mesenchymal transition requires inhibition of both ZEB expression and the rho pathway. BMC Cell Biol 10:94

    Article  PubMed  PubMed Central  Google Scholar 

  30. Motoshima H, Goldstein BJ, Igata M, Araki E (2006) AMPK and cell proliferation – AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 574:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee JH, Kim JH, Kim JS, Chang JW, Kim SB, Park JS, Lee SK (2013) AMP-activated protein kinase inhibits TGF-β-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition. Am J Physiol Renal Physiol 304(6):F686–F697

  32. Kim J, Yoon M, Choi S (2001) Effects of stimulation of AMP-activated protein kinase on insulin-like growth factor 1- and epidermal growth effects of stimulation of AMP-activated protein kinase on insulin- like growth factor 1- and epidermal growth factor-dependent. J Biol Chem 276(22):19102–19110

    Article  CAS  PubMed  Google Scholar 

  33. Kim M-J, Park I-J, Yun H (2010) AMP-activated protein kinase antagonizes pro-apoptotic extracellular signal-regulated kinase activation by inducing dual-specificity protein phosphatases in response to glucose deprivation in HCT116 carcinoma. J Biol Chem 285(19):14617–14627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim H, Kim M, Ju E, Yang Y, Lee M, Lim J (2012) Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression. Biochem Pharmacol 83(3):385–394

    Article  CAS  PubMed  Google Scholar 

  35. Cerezo M, Tichet M, Abbe P (2013) Metformin blocks melanoma invasion and metastasis development in a AMPK / p53-dependent manner. Mol Cancer Ther 12(8):1605–1615

    Article  CAS  PubMed  Google Scholar 

  36. Luo Q, Hu D, Hu S, Yan M, Sun Z, Chen F (2012) In vitro and in vivo anti-tumor effect of metformin as a novel therapeutic agent in human oral squamous cell carcinoma. BMC Cancer 12(1):517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rattan R, Graham RP, Maguire JL, Giri S, Shridhar V (2011) Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin. Neoplasia 13(5):483–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quinn BJ, Kitagawa H, Memmott RM, Gills JJ, Dennis P (2013) Repositioning metformin for cancer prevention and treatment. Trends Endocrinol Metab 24(9):469–480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Antonio Garcia de Herreros, IMIM-Hospital del Mar, Barcelona, Spain; Dr. James Nelson, Stanford University, CA, USA and Dr. K. Satyamoorthy, Manipal University, Manipal, India for providing the plasmids. We gratefully thank the support extended by Manipal University, Manipal for the required facilities and intramural funding for carrying out the present study.

Author’s contribution

Poulomi Banerjee (P.B.): design, collection and assembly of data, data analysis and interpretation, manuscript writing; Harshini Surendran (H.S.): collection of data, analysis and interpretation; Debabani Roy Chowdhury (D.R.C.): collection of data, analysis and interpretation; Karthik Prabhakar (K.P.): recruitment of patients, blood sample collection and final approval of manuscript; Rajarshi Pal (R.P.): Conception and design, data analysis and interpretation, final approval of the manuscript, financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarshi Pal.

Ethics declarations

Conflict of interest

Authors declare no potential conflict of interest.

Electronic supplementary material

ESM 1

(PDF 2.45 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, P., Surendran, H., Chowdhury, D.R. et al. Metformin mediated reversal of epithelial to mesenchymal transition is triggered by epigenetic changes in E-cadherin promoter. J Mol Med 94, 1397–1409 (2016). https://doi.org/10.1007/s00109-016-1455-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1455-7

Keywords

Navigation