Skip to main content
Log in

Personalisierte Arzneitherapie auf genetischer Grundlage

Möglichkeiten und Beispiele aus der Praxis

Personalized drug therapy based on genetics

Possibilities and examples from clinical practice

  • Arzneimitteltherapie
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Pharmakogenetik ist ein wichtiger Baustein in der Individualisierung von Therapien. Eine pharmakogenetische Diagnostik findet jedoch bislang noch wenig Anwendung in der medizinischen Praxis. Eine konsequente Berücksichtigung individueller Patientenfaktoren in der Arzneimitteltherapie kann helfen, diese sicherer und effektiver zu gestalten.

Ziel der Übersicht

Es wird ein kurzer Überblick über Strukturen und Auswirkungen von genetischen Varianten auf Arzneimittelwirkungen gegeben. Einige häufig verordnete Medikamente werden exemplarisch herausgegriffen. Des Weiteren wird die Durchführbarkeit von pharmakogenetischer Diagnostik und Dosisanpassungen beschrieben.

Datenlage

Die European Medicines Agency (EMA) als europäische Zulassungsbehörde hat bereits über 70, die U.S. Food and Drug Administration (FDA) sogar über 150 Arzneimittelinformationen um Angaben zu Biomarkern erweitert. Dies ist ein entscheidender Schritt in Richtung gezielte Therapie. Internationale Leitlinien für die Dosis- und Therapieanpassung basieren auf einer systematischen Datenauswertung der klinischen Evidenz beispielsweise durch das Clinical Pharmacogenetics Implementation Consortium des Pharmacogenomics Research Network.

Schlussfolgerung

Wesentlich für den Erfolg einer Arzneimitteltherapie ist auch die Berücksichtigung individueller Risikofaktoren der Patienten. Eine pharmakogenetische Diagnostik muss von konkreten Dosierungs- und Therapieempfehlungen begleitet werden, um einen Beitrag zur Individualisierung und zur Verbesserung der Sicherheit und Effizienz der Arzneimitteltherapie leisten zu können.

Abstract

Background

Pharmacogenetics are an important component in the individualization of treatment; however, pharmacogenetic diagnostics have so far not been used to any great extent in clinical practice. A consistent consideration of individual patient factors, such as pharmacogenetics may help to improve drug therapy and increase individual safety and efficacy aspects.

Objective

A brief summary of structures and effects of genetic variations on drug efficacy is presented. Some frequently prescribed pharmaceuticals are specified. Furthermore, the feasibility of pharmacogenetic diagnostics and dose recommendations in the clinical practice are described.

Current data

The European Medicines Agency (EMA) as the European approval authority has already extended the drug labels of more than 70 pharmaceuticals by information on pharmacogenetic biomarkers and the U.S. Food and Drug Administration (FDA) more than 150. This is a crucial step towards targeted medicine. Guidelines on dose and therapy adjustments are provided by the Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network.

Conclusion

It is fundamental to consider individual patient factors for successful drug therapy. Dose and therapy recommendations based on pharmacogenetic diagnostics are highly important for individualization as well as improvement of safety and efficiency of drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Alfirevic A, Park BK, Pirmohamed M et al (2012) Research Highlights: Explanation for HLA-B* 57: 01-linked immune-mediated abacavir-induced hypersensitivity. Pharmacogenomics 13:1567

    Article  CAS  PubMed  Google Scholar 

  2. Deutsche Krebsgesellschaft e. V. Interdisziplinäre S3-Leitlinie für die Diagnostik, Therapie und Nachsorge des Mammakarzinoms. http://www.awmf.org/uploads/tx_szleitlinien/032-045OL_k_S3__Brustkrebs_Mammakarzinom_Diagnostik_Therapie_Nachsorge_2012-07.pdf. Zugegriffen: 6. November 2015

  3. Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM) Codein: Anwendungsbeschränkungen zur Behandlung von Kindern und Jugendlichen mit Husten – Empfehlung des europäischen Ausschusses für Risikobewertung (PRAC) bestätigt. http://www.bfarm.de/SharedDocs/Pressemitteilungen/DE/mitteil2015/pm6-2015.html;jsessionid=DEE4C387AB5345A94CFB60A84ABFB2CD.1_cid340. Zugegriffen: 17. November 2015

  4. Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM) Kein Codein für Kinder. http://www.bfarm.de/DE/Arzneimittel/Pharmakovigilanz/Codein/CodeinhaltigeArzneimittel.html. Zugegriffen: 2. November 2015

  5. Blake CM, Kharasch E, Schwab M et al (2013) A meta-analysis of CYP2D6 Metabolizer phenotype and Metoprolol Pharmacokinetics. Clin Pharmacol Ther 94:394–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bodin L, Verstuyft C, Tregouet DA et al (2005) Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood 106:135–140

    Article  CAS  PubMed  Google Scholar 

  7. Bruckert E, Hayem G, Dejager S et al (2005) Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients–the PRIMO study. Cardiovasc Drugs Ther 19:403–414

    Article  CAS  PubMed  Google Scholar 

  8. Daly AK, Donaldson PT, Bhatnagar P et al (2009) HLA-B* 5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 41:816–819

    Article  CAS  PubMed  Google Scholar 

  9. Evans WE (2004) Pharmacogenetics of thiopurine S‑methyltransferase and thiopurine therapy. Ther Drug Monit 26:186–191

    Article  CAS  PubMed  Google Scholar 

  10. Evans WE, Relling MV (2004) Moving towards individualized medicine with pharmacogenomics. Nature 429:464–468

    Article  CAS  PubMed  Google Scholar 

  11. Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286:487–491

    Article  CAS  PubMed  Google Scholar 

  12. U.S. Food and Drug Administration (FDA) Table of Pharmacogenomic Biomarkers in drug labeling. http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm. Zugegriffen: 23. Oktober 2015

  13. Furuta T, Shirai N, Watanabe F et al (2002) Effect of cytochrome P4502C19 genotypic differences on cure rates for gastroesophageal reflux disease by lansoprazole. Clin Pharmacol Ther 72:453–460

    Article  CAS  PubMed  Google Scholar 

  14. Gaedigk A, Simon S, Pearce R et al (2008) The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 83:234–242

    Article  CAS  PubMed  Google Scholar 

  15. Hamadeh IS, Langaee TY, Dwivedi R et al (2014) Impact of CYP2D6 polymorphisms on clinical efficacy and tolerability of metoprolol tartrate. Clin Pharmacol Ther 96:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ingelman-Sundberg M, Sim SC, Gomez A et al (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526

    Article  CAS  PubMed  Google Scholar 

  17. Johnson JA, Cavallari LH (2013) Pharmacogenetics and cardiovascular disease–implications for personalized medicine. Pharmacol Rev 65:987–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kawamura M, Ohara S, Koike T et al (2007) Cytochrome P450 2C19 polymorphism influences the preventive effect of lansoprazole on the recurrence of erosive reflux esophagitis. J Gastroenterol Hepatol 22:222–226

    Article  CAS  PubMed  Google Scholar 

  19. Kawamura M, Ohara S, Koike T et al (2003) The effects of lansoprazole on erosive reflux oesophagitis are influenced by CYP2C19 polymorphism. Aliment Pharmacol Ther 17:965–973

    Article  CAS  PubMed  Google Scholar 

  20. Kirchheiner J, Brockmöller J (2005) Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 77:1–16

    Article  CAS  PubMed  Google Scholar 

  21. Kirchheiner J, Fuhr U, Brockmöller J (2005) Pharmacogenetics-based therapeutic recommendations–ready for clinical practice? Nat Rev Drug Discov 4:639–647

    Article  CAS  PubMed  Google Scholar 

  22. Kirchheiner J, Heesch C, Bauer S et al (2004) Impact of the ultrarapid metabolizer genotype of cytochrome P450 2D6 on metoprolol pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 76:302–312

    Article  CAS  PubMed  Google Scholar 

  23. Kirchheiner J, Nickchen K, Bauer M et al (2004) Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 9:442–473

    Article  CAS  PubMed  Google Scholar 

  24. Klotz U, Schwab M, Treiber G (2004) CYP2C19 polymorphism and proton pump inhibitors. Pharmacol Toxicol 95:2–8

    CAS  Google Scholar 

  25. PharmGKB https://www.pharmgkb.org/index.jsp. Zugegriffen: 23. Oktober 2015

  26. Krähenbühl-Melcher A, Schlienger R, Lampert M et al (2007) Drug-related problems in hospitals. Drug Saf 30:379–407

    Article  PubMed  Google Scholar 

  27. Laine K, Tybring G, Härtter S et al (2001) Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquin test*. Clin Pharmacol Ther 70:327–335

    Article  CAS  PubMed  Google Scholar 

  28. Lam J, Koren G (2014) P‑glycoprotein in the developing human brain: a review of the effects of ontogeny on the safety of Opioids in neonates. Ther Drug Monit 36:699–705

    Article  CAS  PubMed  Google Scholar 

  29. Leppert W (2011) CYP2D6 in the metabolism of opioids for mild to moderate pain. Pharmacology 87:274–285

    Article  CAS  PubMed  Google Scholar 

  30. Mahmoud LB, Ghozzi H, Kamoun A et al (2012) Polymorphism of the N‑acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis. Pathol Biol 60:324–330

    Article  PubMed  Google Scholar 

  31. PharmGKB Dosing guidelines - CPIC. https://www.pharmgkb.org/view/dosing-guidelines.do?source=CPIC. Zugegriffen: 27. Oktober 2015

  32. Phillips KA, Veenstra DL, Oren E et al (2001) Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA 286:2270–2279

    Article  CAS  PubMed  Google Scholar 

  33. Pirmohamed M (2011) Pharmacogenetics: past, present and future. Drug Discov Today 16:852–861

    Article  CAS  PubMed  Google Scholar 

  34. Ramsey LB, Johnson SG, Caudle KE et al (2014) The Clinical Pharmacogenetics Implementation Consortium guideline for SLCO1B1 and Simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther 96:423–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Relling M, Klein T (2011) CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther 89:464–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Riordan JR, Deuchars K, Kartner N et al (1985) Amplification of P‑glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 316(6031):817–819

    Article  CAS  PubMed  Google Scholar 

  37. Schneeweiss S, Hasford J, Göttler M et al (2002) Admissions caused by adverse drug events to internal medicine and emergency departments in hospitals: a longitudinal population-based study. Eur J Clin Pharmacol 58:285–291

    Article  PubMed  Google Scholar 

  38. Scholl C, Lehmann ML, Stingl J (2013) Pharmacogenetics of oral antidiabetic drugs. Pharmakon 1:223–230

    Google Scholar 

  39. Schwab M, Schaeffeler E, Klotz U et al (2004) CYP2C19 polymorphism is a major predictor of treatment failure in white patients by use of lansoprazole-based quadruple therapy for eradication of Helicobacter Pylori. Clin Pharmacol Ther 76:201–209

    Article  CAS  PubMed  Google Scholar 

  40. Siegle I, Fritz P, Eckhardt K et al (2001) Cellular localization and regional distribution of CYP2D6 mRNA and protein expression in human brain. Pharmacogenet Genomics 11:237–245

    Article  CAS  Google Scholar 

  41. Stingl J, Brockmöller J (2013) Personalisierte Pharmakotherapie: Evidenzbasierte Leitlinien und klinische Anwendung pharmakogenetischer Diagnostik (Leitthema). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 56:1509–1521

    Article  CAS  PubMed  Google Scholar 

  42. Stingl J, Brockmöller J (2011) Why, when, and how should pharmacogenetics be applied in clinical studies?: current and future approaches to study designs. Clin Pharmacol Ther 89:198–209

    Article  CAS  Google Scholar 

  43. Stingl J, Brockmöller J, Viviani R (2013) Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol Psychiatry 18:273–287

    Article  CAS  PubMed  Google Scholar 

  44. Stingl JC, Welker S, Hartmann G et al (2015) Where failure is not an option–personalized medicine in astronauts. PLOS One 10:e0140764

    Article  PubMed  PubMed Central  Google Scholar 

  45. Swen J, Nijenhuis M, Boer AD et al (2011) Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther 89:662–673

    Article  CAS  PubMed  Google Scholar 

  46. Swen J, Wilting I, Goede AD et al (2008) Pharmacogenetics: from bench to byte. Clin Pharmacol Ther 83:781–787

    Article  CAS  PubMed  Google Scholar 

  47. Van Schie RM, Wadelius M, Kamali F et al (2009) Genotype-guided dosing of coumarin derivatives: the European pharmacogenetics of anticoagulant therapy (EU-PACT) trial design. Pharmacogenomics 10:1687–1695

    Article  PubMed  Google Scholar 

  48. Wadelius M, Chen LY, Lindh JD et al (2009) The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 113:784–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wagle N, Emery C, Berger MF et al (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29:3085–3096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wester K, Jönsson AK, Spigset O et al (2008) Incidence of fatal adverse drug reactions: a population based study. Br J Clin Pharmacol 65:573–579

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wolking S, Schaeffeler E, Lerche H et al (2015) Impact of genetic polymorphisms of ABCB1 (MDR1, P‑Glycoprotein) on drug disposition and potential clinical implications: update of the literature. Clin Pharmacokinet 53:709–735

    Article  Google Scholar 

  52. Yip V, Marson A, Jorgensen A et al (2012) HLa genotype and Carbamazepine-induced cutaneous adverse drug reactions: a systematic review. Clin Pharmacol Ther 92:757–765

    Article  CAS  PubMed  Google Scholar 

  53. Yue Q, Hasselstrom J, Svensson J et al (1991) Pharmacokinetics of codeine and its metabolites in Caucasian healthy volunteers: comparisons between extensive and poor hydroxylators of debrisoquine. Br J Clin Pharmacol 31:635–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zoppi M, Braunschweig S, Kuenzi U et al (2000) Incidence of lethal adverse drug reactions in the comprehensive hospital drug monitoring, a 20-year survey, 1974–1993, based on the data of Berne/St. Gallen. Eur J Clin Pharmacol 56:427–430

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Stingl.

Ethics declarations

Interessenkonflikt

J.C. Stingl, K.S. Just, K. Kaumanns, M. Schurig-Urbaniak, C. Scholl, D. von Mallek und J. Brockmöller geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Wehling, Mannheim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stingl, J.C., Just, K.S., Kaumanns, K. et al. Personalisierte Arzneitherapie auf genetischer Grundlage. Internist 57, 289–297 (2016). https://doi.org/10.1007/s00108-015-0013-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-015-0013-7

Schlüsselwörter

Keywords

Navigation