Skip to main content

Advertisement

Log in

Personalisierte Pharmakotherapie

Evidenzbasierte Leitlinien und klinische Anwendung pharmakogenetischer Diagnostik

Personalised pharmacogenetics

Evidence-based guidelines and clinical application of pharmacogenetic diagnostics

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Eine konsequente Berücksichtigung individueller Faktoren in der praktischen Arzneimitteltherapie könnte helfen, diese sicherer und effizienter zu gestalten. In der Onkologie findet eine individuell zugeschnittene Arzneimitteltherapie durch Behandlungen, die eine Bestimmung molekularer Tumormarker voraussetzen, zunehmende Verbreitung. Die pharmakogenetische Diagnostik im engeren Sinne, also die molekulargenetische oder pharmakologische Messung individueller Besonderheiten bei der Medikamentenwirkung oder im Medikamentenstoffwechsel, wird aber bislang in der medizinischen Praxis wenig angewendet. Fehlende Daten, ein fehlendes Wissen um die Zusammenhänge, die begrenzte Verfügbarkeit entsprechender Labordiagnostik ebenso wie die Tatsache, dass nur ein kleiner Teil der Patienten von dieser neuen Diagnostik profitieren kann, gehören zu den Ursachen für die geringe Verbreitung der pharmakogenetischen Diagnostik. Dabei gibt es insbesondere im Bereich der Pharmakokinetik (also Absorption, Metabolismus und Elimination von Medikamenten) klare Konzepte für eine pharmakogenetisch optimierte Therapie. Diese Konzepte basieren auf dem Bioäquivalenzprinzip und sind auch Grundlage der individuellen Arzneitherapie in anderen Bereichen wie die Berücksichtigung von Leber- und Nierenerkrankungen und von Arzneimittelwechselwirkungen. Zunehmend wird auf die mögliche Bedeutung pharmakogenetischer Varianten in den Arzneimittelinformationen für Ärzte hingewiesen. Die von der FDA herausgegebenen Arzneimittelinformationen nennen pharmakogenetische Faktoren immerhin bei inzwischen mehr als 60 Medikamenten, meist jedoch, ohne konkrete Handlungsanweisungen für die Ärzte zu geben. Diese Lücke versuchen wir im Bereich der Pharmakokinetik zu schließen, aber auch internationale Konsortien, wie z. B. das Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network (CPIC), haben sich zum Ziel gesetzt, Leitlinien für eine Dosis- oder Therapieanpassung basierend auf pharmakogenetischer Diagnostik herauszugeben, und dies auf Grundlage der jeweils besten verfügbaren Evidenz.

Abstract

The broad clinical application of pharmacogenetic diagnostics for individualised drug treatment is still limited. With the exception of oncological therapies where molecular tumor makers are frequently used to decide upon individual drug therapies, pharmacogenetic testing is not generally offered in clinical laboratory diagnostics, because the costs are not covered by general health insurance and it is not evident what consequences the results of a genotyping test may have for the individual drug treatment. Especially in the context of pharmacokinetics, bioequivalence-based concepts have been developed that allow the individual drug dosage or therapy to be adjusted to genetic polymorphisms in drug metabolism, drug transport that affect drug absorption, metabolism and elimination. Pharmacogenetic aspects are increasingly included in the product information (e.g., on its website the FDA lists more than 60 drug labels that include pharmacogenetic information). However, most pharmacogenetic information on drug labels does not give recommendations for clinical decisions to be made based on individual genotypes. This gap is currently being closed by the development of international consortia aiming to base clinical recommendations on the best available evidence by systematic review of the existing data. The Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network (CPIC) is an international community-driven organisation that is developing peer-reviewed, freely available gene/drug guidelines that are published in full at PharmGKB (http://www.pharmgkb.org). The aim of these guidelines is to give therapeutic recommendations such as dose adjustments or suggestions for the choice of an alternative drug in the case of specific genotypes (phenotypes) that predict slow metabolism or transport of drugs or safety risks or risks of therapeutic failure. These guidelines are not mandatory but serve to facilitate the translation of pharmacogenetic knowledge from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Swen JJ, Wilting I, Goede AL de et al (2008) Pharmacogenetics: from bench to byte. Clin Pharmacol Ther 83:781–787

    Article  PubMed  CAS  Google Scholar 

  2. Stingl JC, Brockmoller J, Viviani R (2013) Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol Psychiatry 18:273–287

    Article  PubMed  CAS  Google Scholar 

  3. Pirmohamed M (2011) Pharmacogenetics: past, present and future. Drug Discov Today 16:852–861

    Article  PubMed  CAS  Google Scholar 

  4. Yip VL, Marson AG, Jorgensen AL et al (2012) HLA genotype and carbamazepine-induced cutaneous adverse drug reactions: a systematic review. Clin Pharmacol Ther 92:757–765

    Article  PubMed  CAS  Google Scholar 

  5. Wagle N, Emery C, Berger MF et al (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29:3085–3096

    Article  PubMed  CAS  Google Scholar 

  6. US Food and Drug Administration (2005) Guidance for industry pharmacogenomic data submissions. http://www.fda.gov/downloads/regulatoryinformation/guidances/ucm126957.pdf

  7. US Food and Drug Administration: Table of Pharmacogenomic Biomarkers in Drug Labels (http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm)

  8. Daly AK, Donaldson PT, Bhatnagar P et al (2009) HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 41:816–819

    Article  PubMed  CAS  Google Scholar 

  9. Alfirevic A, Park BK, Pirmohamed M, Naisbitt DJ (2012) Explanation for HLA-B*57:01-linked immune-mediated abacavir-induced hypersensitivity. Pharmacogenomics 13:1567–1569

    Article  PubMed  CAS  Google Scholar 

  10. Daly AK (2012) Using genome-wide association studies to identify genes important in serious adverse drug reactions. Annu Rev Pharmacol Toxicol 52:21–35

    Article  PubMed  CAS  Google Scholar 

  11. Stingl Kirchheiner JC, Brockmoller J (2011) Why, when, and how should pharmacogenetics be applied in clinical studies?: Current and future approaches to study designs. Clin Pharmacol Ther 89:198–209

    Article  CAS  Google Scholar 

  12. Laine K, Tybring G, Hartter S et al (2001) Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquin test. Clin Pharmacol Ther 70:327–335

    PubMed  CAS  Google Scholar 

  13. Cappellini MD, Fiorelli G (2008) Glucose-6-phosphate dehydrogenase deficiency. Lancet 371:64–74

    Article  PubMed  CAS  Google Scholar 

  14. Ben Mahmoud L, Ghozzi H, Kamoun A et al (2012) Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis. Pathol Biol (Paris) 60:324–330

    Google Scholar 

  15. Relling MV, Klein TE (2011) CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin Pharmacol Ther 89:464–467

    Article  PubMed  CAS  Google Scholar 

  16. Swen JJ, Huizinga TW, Gelderblom H et al (2007) Translating pharmacogenomics: challenges on the road to the clinic. PLoS Med 4:e209

    Article  PubMed  Google Scholar 

  17. Swen JJ, Nijenhuis M, de Boer A et al (2011) Pharmacogenetics: from bench to byte – an update of guidelines. Clin Pharmacol Ther 89:662–673

    Article  PubMed  CAS  Google Scholar 

  18. Kirchheiner J, Nickchen K, Bauer M et al (2004) Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 9:442–473

    Article  PubMed  CAS  Google Scholar 

  19. Kirchheiner J, Brockmoller J (2005) Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 77:1–16

    Article  PubMed  CAS  Google Scholar 

  20. EGAPP Working Group (2007) Recommendations from the EGAPP Working Group: testing for cytochrome P450 polymorphisms in adults with nonpsychotic depression treated with selective serotonin reuptake inhibitors. Genet Med 9:819–825

    Article  Google Scholar 

  21. Relling MV, Gardner EE, Sandborn WJ et al (2011) Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther 89:387–391

    Article  PubMed  CAS  Google Scholar 

  22. Relling MV, Gardner EE, Sandborn WJ et al (2013) Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther 93:324–325

    Article  PubMed  CAS  Google Scholar 

  23. Relling MV, Hancock ML, Rivera GK et al (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 91:2001–2008

    Article  PubMed  CAS  Google Scholar 

  24. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141

    Article  PubMed  CAS  Google Scholar 

  25. Shen H, Li J, Zhang J et al (2013) Comprehensive characterization of human genome variation by high coverage whole-genome sequencing of forty four Caucasians. PLoS One 8:e59494

    Article  PubMed  CAS  Google Scholar 

  26. Ho PC, Saville DJ, Wanwimolruk S (2001) Inhibition of human CYP3A4 activity by grapefruit flavonoids, furanocoumarins and related compounds. J Pharm Pharm Sci 4:217–227

    PubMed  CAS  Google Scholar 

  27. Sorensen JM (2002) Herb-drug, food-drug, nutrient-drug, and drug-drug interactions: mechanisms involved and their medical implications. J Altern Complement Med 8:293–308

    Article  PubMed  Google Scholar 

  28. Okino ST, Pookot D, Li LC et al (2006) Epigenetic inactivation of the dioxin-responsive cytochrome P4501A1 gene in human prostate cancer. Cancer Res 66:7420–7428

    Article  PubMed  CAS  Google Scholar 

  29. Ling G, Wei Y, Ding X (2007) Transcriptional regulation of human CYP2A13 expression in the respiratory tract by CCAAT/enhancer binding protein and epigenetic modulation. Mol Pharmacol 71:807–816

    Article  PubMed  CAS  Google Scholar 

  30. Ivanov M, Kacevska M, Ingelman-Sundberg M (2012) Epigenomics and interindividual differences in drug response. Clin Pharmacol Ther 92:727–736

    Article  PubMed  CAS  Google Scholar 

  31. McDonald HP, Garg AX, Haynes RB (2002) Interventions to enhance patient adherence to medication prescriptions: scientific review. JAMA 288:2868–2879

    Article  PubMed  Google Scholar 

  32. Scott SA, Sangkuhl K, Gardner EE et al (2011) Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther 90:328–332

    Article  PubMed  CAS  Google Scholar 

  33. Johnson JA, Gong L, Whirl-Carrillo M et al (2011) Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther 90:625–629

    Article  PubMed  CAS  Google Scholar 

  34. Crews KR, Gaedigk A, Dunnenberger HM et al (2012) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharmacol Ther 91:321–326

    Article  PubMed  CAS  Google Scholar 

  35. Martin MA, Klein TE, Dong BJ et al (2012) Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and abacavir dosing. Clin Pharmacol Ther 91:734–738

    Article  PubMed  CAS  Google Scholar 

  36. Wilke RA, Ramsey LB, Johnson SG et al (2012) The Clinical Pharmacogenomics Implementation Consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther 92:112–117

    Article  PubMed  CAS  Google Scholar 

  37. Hershfield MS, Callaghan JT, Tassaneeyakul W et al (2013) Clinical Pharmacogenetics Implementation Consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin Pharmacol Ther 93:153–158

    Article  PubMed  CAS  Google Scholar 

  38. Hicks JK, Swen JJ, Thorn CF et al (2013) Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin Pharmacol Ther 93:402–408

    Article  PubMed  CAS  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J.C. Stingl und J. Brockmöller geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.C. Stingl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stingl, J., Brockmöller, J. Personalisierte Pharmakotherapie. Bundesgesundheitsbl. 56, 1509–1521 (2013). https://doi.org/10.1007/s00103-013-1822-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-013-1822-2

Schlüsselwörter

Keywords

Navigation