Skip to main content
Log in

Thermal modification of consolidated oriented strandboards: effects on dimensional stability, mechanical properties, chemical composition and surface color

  • Originals
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The objective of this paper was to propose a thermal post-treatment to improve the dimensional stability of oriented strandboard (OSB). Commercial OSB panels were obtained from an industrial batch and thermally treated in a single opening hot-press at two temperature levels (190 and 220 °C) and three duration times (12, 16 and 20 min). Dimensional stability, mechanical properties, chemical composition and surface color were studied. The results pointed-out that the proposed treatment can be applied to significantly improve the OSB dimensional stability by reducing thickness swelling, water absorption, and equilibrium moisture content in comparison to the untreated board. The mechanical properties were partially affected with reduction in modulus of rupture and without any adverse effect on the other properties. Chemical degradation occurred, mainly in relation to hemicelluloses contents, reducing equilibrium moisture content. The board surface became darker and this characteristic was correlated with the observed properties improvement. Dimensional stability properties were affected by both temperature and duration of the treatment, while the others mainly by temperature. The proposed thermal treatment can be recommended as a post-treatment to improve the OSB performance.

Zusammenfassung

Ziel dieser Studie war es, OSB-Platten einer nachträglichen Wärmebehandlung zu unterziehen, um deren Dimensionsstabilität zu verbessern. Handelsübliche OSB-Platten aus industrieller Fertigung wurden in einer Einetagen-Heißpresse bei zwei unterschiedlichen Temperaturen (190 und 220 °C) unterschiedlich lang (12, 16 und 20 Min) wärmebehandelt. Untersucht wurden die Dimensionsstabilität, die mechanischen Eigenschaften, die chemische Zusammensetzung und die Oberflächenfarbe. Die Ergebnisse zeigten, dass das vorgeschlagene Verfahren geeignet ist, durch Reduzierung der Dickenquellung, der Wasseraufnahme und der Gleichgewichtsfeuchte die Dimensionsstabilität von OSB-Platten signifikant zu verbessern. Die mechanischen Eigenschaften waren davon teilweise betroffen. Die Biegefestigkeit nahm ab, die anderen Eigenschaften wurden nicht beeinträchtigt. Ein chemischer Abbau wurde festgestellt: im Wesentlichen bezüglich des Hemicellulosegehalts, wodurch die Gleichgewichtsfeuchte reduziert wurde. Die Holzoberfläche wurde dunkler, und war mit den verbesserten Eigenschaften der OSB-Platten korreliert. Die Dimensionsstabilität wurde sowohl von der Temperatur als auch von der Behandlungsdauer beeinflusst, während die anderen Eigenschaften nur von der Temperatur beeinflusst wurden. Die vorgeschlagene Wärmebehandlung kann als ein nachträgliches Behandlungsverfahren zur Verbesserung der OSB-Eigenschaften empfohlen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Society for Testing and Materials (1998) Standard test methods for evaluating properties of wood-base fiber and particle panel materials. ASTM D1037-98a. ASTM, West Conshohocken

  2. Back EL (1987) The bonding mechanism in hardboard manufacture. Holzforschung 41:247–258

    Article  CAS  Google Scholar 

  3. Beall FC, Eickner HW (1970) Thermal degradation of wood components. A review of the literature. USDA Forest Service, Research Paper. FPL 130

  4. Bengtsson C, Jermer J, Brem F (2002) Bending strength of heat-treated spruce and pine timber. In: Annual Meeting Internatinal Research Group on Wood Preservation, 33, Cardiff, 2002, p 8

  5. Bhuiyan MTR, Hirai N, Sobue N (2001) Effect of intermittent heat treatment on cristallinity in wood cellulose. J Wood Sci 47:336–416

    Article  CAS  Google Scholar 

  6. Bhuiyan MTR, Hirai N, Sobue N (2000) Changes of cristallinity in wood cellulose by heat treatment under dried and moist conditions. J Wood Sci 46:431–436

    Article  CAS  Google Scholar 

  7. Boonstra MJ, Tjeerdsma B (2006) Chemical analysis of heat treated softwoods. Holz Roh- Werkst 64:204–211

    Article  CAS  Google Scholar 

  8. Bourgois J, Janin G, Guyonnet R (1991) Color measurement: a fast method to study and optimize chemical transformations in thermically treated wood (in French). Holzforschung 45:377–382

    Article  CAS  Google Scholar 

  9. Bektha P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spuce. Holzforschung 57:539–546

    Article  Google Scholar 

  10. Brischke C, Welzbacher CR, Brandt K, Rapp AO (2007) Quality control of thermally modified timber: Interrelationship between heat treatment intensities and CIE L*a*b* color data on homogenized wood samples. Holzforschung 61:19–22

    Article  CAS  Google Scholar 

  11. CSA O437.0 (1993) Oriented Strandboard and Waferboard. Technical Bulletin SBA, Standard Willowdale, Ontario

  12. Charrier B, Charrier F, Janin G, Kamdem DP, Irmouli M, Gonçalez J (2002) Study of industrial boiling process on walnut colour: experimental study under industrial conditions. Holz Roh- Werkst 60:259–264

    Article  Google Scholar 

  13. Christiansen AW (1997). Effect of overdrying on toughness of yellow-poplar veneer. Holz Roh- Werkst 55:71–75

    Article  Google Scholar 

  14. Chow SZ, Mukai HN (1972) Effect of thermal degradation of cellulose on wood-polymer bonding. Wood Sci 4:202–208

    CAS  Google Scholar 

  15. Chow SZ, Pickles KJ (1971) Thermal softening and degradation of wood and bark. Wood Fiber 3:166–178

    CAS  Google Scholar 

  16. Curling S, Clausen CA, Winandy JE (2001) The effect of hemicellulose degradation on the mechanical properties of wood during brown rot decay. In: Annual Meeting Internatinal Research Group on Wood Preservation, 32, 2001, Nara, p 10

  17. Del Menezzi CHS, Souza RQ, Thompson RM, Teixeira DE, Okino EYA, Costa AF (2008) Properties after weathering and decay resistance of a thermally modified wood structural board. Int Biodeteriorat Biodegrad 62:448–454

    Article  CAS  Google Scholar 

  18. Del Menezzi CHS, Tomaselli I (2007) Technological and economic feasibility to produce OSB with enhanced properties in Brazil. In: International Panel Products Symposium, 2007, Cardiff. Proceedings. BioComposites Centre, pp 35–45

  19. Del Menezzi CHS, Tomaselli I, Souza MR (2007) Non-destructive evaluation of thermally modified OSB: Part 1 – effect of thermal treatment on stress wave velocity. Scientia Forestalis 76:67–75, (in portuguese)

    Google Scholar 

  20. Del Menezzi CHS, Tomaselli I (2006) Contact thermal post-treatment of oriented strandboard to improve dimensional stability: a preliminary study. Holz Roh- Werkst 64:212–217

    Article  CAS  Google Scholar 

  21. Ehrman T (1996). Laboratory analytical procedure: Determination of acid-soluble lignin in biomass. Golden, CO: NREL/MRI, 7 p. (Laboratory Analytical Procedure, LAP-004)

  22. Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, p 613

    Google Scholar 

  23. Hsu WE, Schwald W, Shields JA (1989) Chemical and physical changes required for producing dimensionally stable wood-based composites. Part 2: Chemical and physical changes required for producing dimensionally stable wood-based composites. Wood Sci Technol 23:281–288

    Google Scholar 

  24. Hsu WE, Schwald W, Schwald J, Shields JA (1988). Chemical and physical changes required for producing dimensionally stable wood-based composites. Part 1: Steam pretreatment. Wood Sci Technol 22:281–289

    Article  CAS  Google Scholar 

  25. Ishiguri F, Maruyama S, Takahashi K, Abe Z, Yokota S, Andoh M, Yoshizawa N (2003) Extractives relating to heartwood color changes in sugi (Cryptomeria japonica) by a combination of smoke-heating an UV radiation exposure. J Wood Sci 49:135–139

    Article  CAS  Google Scholar 

  26. Johansson D, Morén T (2006). The potential of colour measurement for strength prediction of thermally treated wood. Holz Roh- Werkst 64:104–110

    Article  Google Scholar 

  27. Kallander B, Bengesson C, Dahlberg J (2001). Influence of drying in temperatures between 70 and 120 °C on selected wood properties of norway spruce. In: Internatinal IUFRO Wood Drying Conference, 7., Proceedings, 2001, FFPR, Tsukuba, pp 306–311

  28. Kim G-H, Yun K-E, Kim J-J (1998) Effect of heat treatment on the decay resistance and the bending properties of radiata pine sapwood. Mat Org 32:1–10

    Google Scholar 

  29. Kolin B, Janezic TS (1996) The effect of temperature, density and chemical composition upon the limit of higroscopicity of wood. Holzforschung 50:263–268

    Article  CAS  Google Scholar 

  30. Kosikova B, Hricovini M, Cosentino C (1999) Interaction of lignin and polysaccahireds in beech wood (Fagus sylvatica) during drying precesses. Wood Sci Technol 33:373–380

    Article  CAS  Google Scholar 

  31. Kozlik CJ (1974) Effect of temperature, time and drying medium on the strength and gluability of douglas-fir and southern pine. For Prod J 24(2):46–53

    Google Scholar 

  32. Kubojima Y, Okano T, Ohta M (2000) Bending strength and toughness of heat-treated wood. J Wood Sci 46:8–15

    Article  Google Scholar 

  33. Landrock AH (1985) Handbook of adhesives. Noyes Publications, New York

    Google Scholar 

  34. Matsumoto T, Matsumoto H, Fujimoto N, Fujimoto Y, Murase Y (2001) Influence of thermal treatments on the mechanical properties of wood. Internatinal IUFRO Wood Drying Conference, 7., Proceedings, 2001, FFPR, Tsukuba, pp 430–433

  35. Mitchell PH (1988) Irreversible property changes of small loblolly pine specimens heated in air, nitrogen, or oxygen. Wood Fiber Sci 20:320–335

    CAS  Google Scholar 

  36. Mohebby B, Ilbeighi F, Kazemi-Najafi S (2008) Influence of hydrothermal modification of fibers on some physical and mechanical properties of medium density fiberboard (MDF). Holz Roh- Werkst 66:213–218

    Article  CAS  Google Scholar 

  37. Ohlmeyer M, Kruse K (1999) Hot stacking and its effects on panel properties. In: European Panel Products Symposium, 3, 1999, Proceedings. Cardiff, 1999, pp 293–300

  38. Okino EYA, Pastore TCM, Camargos JAA, Alves MVS, Santos PHO, Teixeira DE, Santana MAE (2009) Color variation of rubberwood clones and cypress infected by Gloeophyllum striatum and Phanerochaete chrysosporium. Int Biodeteriorat Biodegrad 63:41–45

    Article  CAS  Google Scholar 

  39. Okino EYA, Santana MAE, Resck IS, Alves MVS, Falcomer VAS, Cunha JBM, Santos PHO (2008) Liquid chromatography and solid state CP/MAS 13C NMR techniques for chemical compound characterizations of cypress wood Cupressus glauca Lam. exposed to brown- and white-rot fungi. Carbohydrate Polym 73:164–172

    Article  CAS  Google Scholar 

  40. Okino EYA, Teixeira DE, Del Menezzi CHS (2007) Post-thermal treatment of oriented strandboard made from cypress (Cupressus glauca Lam.). Maderas: Ciencia y Tecnologia 9:199–210

    Google Scholar 

  41. Paul W, Ohlmeyer M, Leithoff H (2007) Thermal modifictaion of OSB-strands by one-step heat pre-treatment – Influence of temperature on weight loss, hygrocopicity and improved fungal resistance. Holz Roh- Werkst 65:57–63

    Article  CAS  Google Scholar 

  42. Paul W, Ohlmeyer M, Leithoff H, Boonstra MJ, Pizzi A (2006) Optimising the properties of OSB by one-step heat pre-treatment process. Holz Roh- Werkst 64:227–234

    Article  CAS  Google Scholar 

  43. Pellerin RF, Ross RJ (2002) Nondestructive Evaluation of Wood. FPS, Madison, p 210

    Google Scholar 

  44. Pétrissans M, Gérardin P, El Bakali I, Serraj M (2003) Wettability of heat-treated wood. Holzforschung 57:301–307

    Article  Google Scholar 

  45. Pincelli ALPSM (1999) Effect of the thermal rectification on the finishing quality, bonding and color of the wood from Eucalyptus saligna and Pinus caribaea var. hondurensis. Piracicaba: USP/ESALQ, p 115 (in portuguese – MSc Thesis on Wood Science and Technology)

  46. Santana MAE, Okino EYA (2007) Chemical composition of 36 Brazilian Amazon forest wood species. Holzforschung 61(5):469–477

    Article  CAS  Google Scholar 

  47. Santos JA (2000) Mechanical behavior of eucalyptus wood modified by heat. Wood Sci Technol 34:39–43

    Article  CAS  Google Scholar 

  48. Schnabel T, Zimmer B, Petutschnigg AJ, Schönberger S (2007) An approach to classify thermally modified hardwoods by color. For Prod J 57(9):105–110

    Google Scholar 

  49. Sivonen H, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654

    Article  CAS  Google Scholar 

  50. Stamm AJ (1964) Wood and Cellulose Science. Ronald Press, New York, p 549

    Google Scholar 

  51. Suchsland O, Xu H (1991) Model analysis of flakeboard variables. For Prod J 41(11/12):55–61

    CAS  Google Scholar 

  52. Sundqvist B (2002) Color response of Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula pubescens) subjected to heat treatment in capillary phase. Holz Roh- Werkst 60:106–114

    Article  Google Scholar 

  53. Templeton D, Ehrman T (1995) Laboratory analytical procedure: Determination of acid-insoluble lignin in biomass. Golden, CO: NREL/MRI, p 13 (Laboratory Analytical Procedure, LAP-003)

  54. Tjeerdsma BF, Stevens M, Militz H (2000) Durability aspects of (hydro) thremal treated wood. In: Annual Meeting Internatinal Research Group on Wood Preservation, 31, 2000, Kona, p 7

  55. Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh- Werkst 56:149–153

    Article  CAS  Google Scholar 

  56. Umemura K, Kawai S (2002) Durability of isocyanate resin adhesives for wood III: degradation under constant dry heating. J Wood Sci 48:380–386

    Article  CAS  Google Scholar 

  57. Winandy JE, Krzysik AM (2007) Thermal modification of wood fibers during hot-pressing of MDF composites: Part I. Relative effects and benefits of thermal exposure. Wood Fiber Sci 39:450–461

    CAS  Google Scholar 

  58. Yildiz S, Çolakoglu G, Yildiz UC, Gezer ED, Temiz A (2002) Effects of heat treatment on modulus of elasticity of beech wood. In: Annual Meeting Internatinal Research Group on Wood Preservation, 33, 2002, Cardiff, p 6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.H.S. Del Menezzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Menezzi, C., Tomaselli, I., Okino, E. et al. Thermal modification of consolidated oriented strandboards: effects on dimensional stability, mechanical properties, chemical composition and surface color . Eur. J. Wood Prod. 67, 383–396 (2009). https://doi.org/10.1007/s00107-009-0332-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-009-0332-2

Keywords

Navigation