Advertisement

Prävention postoperativer Wundinfektionen

Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut
Bekanntmachungen – Amtliche Mitteilungen

Literatur

  1. 1.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2010) Die Kategorien in der Richtlinie für Krankenhaushygiene und Infektionsprävention - Aktualisierung der Definitionen. Bundesgesundheitsblatt 53(7):754–756CrossRefGoogle Scholar
  2. 2.
    Statistisches Bundesamt (2013) Fallpauschalenbezogene Krankenhausstatistik (DRG-Statistik) Operationen und Prozeduren der vollstationären Patientinnen und Patienten in Krankenhäusern - Ausführliche Darstellung - 2012 (URL: https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/Krankenhaeuser/OperationenProzeduren5231401127014.pdf?__blob=publicationFile ) Google Scholar
  3. 3.
    Behnke M, Hansen S, Leistner R et al (2013) Nosokomiale Infektionen und Antibiotika-Anwendung. Zweite nationale Prävalenzstudie in Deutschland. Dtsch Arztebl 110:627–633Google Scholar
  4. 4.
    Gastmeier P, Geffers C (2008) Nosokominale Infektionen in Deutschland: Wie viele gibt es wirklich? Eine Schätzung für das Jahr 2006. Dtsch Med Wochenschr 133:1111–1115PubMedCrossRefGoogle Scholar
  5. 5.
    Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR (1999) Guideline for prevention of surgical site infection, 1999. Am J Infect Control 27(2):97–134PubMedCrossRefGoogle Scholar
  6. 6.
    Robson MC (1979) Infection in the surgical patient: an imbalance in the normal equilibrium. Clin Plast Surg 6(4):493–503PubMedGoogle Scholar
  7. 7.
    Hansis ML (1996) Pathophysiology of infection--a theoretical approach. Injury 27(Suppl 3):SC5–SC8PubMedGoogle Scholar
  8. 8.
    Eijer H, Hauke C, Arens S, Printzen G, Schlegel U, Perren SM (2001) PC-fix and local infection resistance--influence of implant design on postoperative infection development, clinical and experimental results. Injury 32(Suppl 2):B38–B43PubMedCrossRefGoogle Scholar
  9. 9.
    Arens S, Hansis M (1998) Implantate in der Unfallchirurgie: Osteosynthese mit Titan. Dtsch Arztebl 95(24):A1516–A1518Google Scholar
  10. 10.
    Cruse PE, Foord R (1973) A five-year prospective study of 23,649 surgical wounds. Arch Surg 107(2):206–210PubMedCrossRefGoogle Scholar
  11. 11.
    Cruse PJ, Foord R (1980) The epidemiology of wound infection. A 10-year prospective study of 62,939 wounds. Surg Clin North Am 60(1):27–40PubMedCrossRefGoogle Scholar
  12. 12.
    Kappstein I (2008) Postoperative Wundinfektionen - Ursachen und Prävention. Krankenhhyg up2date 3(01):9–28CrossRefGoogle Scholar
  13. 13.
    Uckay I, Harbarth S, Peter R, Lew D, Hoffmeyer P, Pittet D (2010) Preventing surgical site infections. Expert Rev Anti Infect Ther 8(6):657–670PubMedCrossRefGoogle Scholar
  14. 14.
    Rutala WA, Weber DJ (2001) A review of single-use and reusable gowns and drapes in health care. Infect Control Hosp Epidemiol 22(04):248–257PubMedCrossRefGoogle Scholar
  15. 15.
    Ayliffe GAJ (1991) Role of the environment of the operating suite in surgical wound infection. Rev Infect Dis 13(Suppl 10):S800–S804PubMedCrossRefGoogle Scholar
  16. 16.
    Reiffel AJ, Barie PS, Spector JA (2013) A multi-disciplinary review of the potential association between closed-suction drains and surgical site infection. Surg Infect (Larchmt) 14(3):244–269CrossRefGoogle Scholar
  17. 17.
    Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen (NRZ) (2015) KISS Krankenhaus-Infektions-Surveillance-System. Modul OP-KISS. Referenzdaten. Berechnungszeitraum: Januar 2010 bis Dezember 2014 (URL: http://www.nrz-hygiene.de/fileadmin/nrz/module/op/Referenzdaten_2010-2014 ) Google Scholar
  18. 18.
    Bonds AM, Novick TK, Dietert JB, Araghizadeh FY, Olson CH (2013) Incisional negative pressure wound therapy significantly reduces surgical site infection in open colorectal surgery. Dis Colon Rectum 56(12):1403–1408PubMedCrossRefGoogle Scholar
  19. 19.
    Malone DL, Genuit T, Tracy JK, Gannon C, Napolitano LM (2002) Surgical site infections: reanalysis of risk factors. J Surg Res 103(1):89–95PubMedCrossRefGoogle Scholar
  20. 20.
    Olsen MA, Lock-Buckley P, Hopkins D, Polish LB, Sundt TM, Fraser VJ (2002) The risk factors for deep and superficial chest surgical-site infections after coronary artery bypass graft surgery are different. J Thorac Cardiovasc Surg 124(1):136–145PubMedCrossRefGoogle Scholar
  21. 21.
    Kao LS, Phatak UR (2013) Glycemic control and prevention of surgical site infection. Surg Infect (Larchmt) 14(5):437–444CrossRefGoogle Scholar
  22. 22.
    Okabayashi T, Shima Y, Sumiyoshi T et al (2014) Intensive versus intermediate glucose control in surgical intensive care unit patients. Diabetes Care 37(6):1516–1524PubMedCrossRefGoogle Scholar
  23. 23.
    Okabayashi T, Nishimori I, Maeda H, Yamashita K, Yatabe T, Hanazaki K (2009) Effect of intensive insulin therapy using a closed-loop glycemic control system in hepatic resection patients: a prospective randomized clinical trial. Diabetes Care 32(8):1425–1427PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Golden SH, Peart-Vigilance C, Kao WH, Brancati FL (1999) Perioperative glycemic control and the risk of infectious complications in a cohort of adults with diabetes. Diabetes Care 22(9):1408–1414PubMedCrossRefGoogle Scholar
  25. 25.
    Russo PL, Epi GDC, Spelman DW (2002) A new surgical-site infection risk index using risk factors identified by multivariate analysis for patients undergoing coronary artery bypass graft surgery. Infect Control Hosp Epidemiol 23(7):372–376PubMedCrossRefGoogle Scholar
  26. 26.
    Hirao M, Tsujinaka T, Imamura H et al (2013) Overweight is a risk factor for surgical site infection following distal gastrectomy for gastric cancer. Gastric Cancer 16(2):239–244PubMedCrossRefGoogle Scholar
  27. 27.
    Itani KM, Jensen EH, Finn TS, Tomassini JE, Abramson MA (2008) Effect of body mass index and ertapenem versus cefotetan prophylaxis on surgical site infection in elective colorectal surgery. Surg Infect (Larchmt) 9(2):131–137CrossRefGoogle Scholar
  28. 28.
    Yoshimura Y, Kubo S, Hirohashi K et al (2003) Plastic iodophor drape during liver surgery operative use of the iodophor-impregnated adhesive drape to prevent wound infection during high risk surgery. World J Surg 27(6):685–688PubMedCrossRefGoogle Scholar
  29. 29.
    Dahl RM, Wetterslev J, Jorgensen LN, Rasmussen LS, Moller AM, Meyhoff CS (2014) The association of perioperative dexamethasone, smoking and alcohol abuse with wound complications after laparotomy. Acta Anaesthesiol Scand 58(3):352–361PubMedCrossRefGoogle Scholar
  30. 30.
    Swenson BR, Camp TR, Mulloy DP, Sawyer RG (2008) Antimicrobial-impregnated surgical incise drapes in the prevention of mesh infection after ventral hernia repair. Surg Infect (Larchmt) 9(1):23–32CrossRefGoogle Scholar
  31. 31.
    Kulier A, Gombotz H (2001) Perioperative Anämie. Anaesthesist 50(2):73–86PubMedCrossRefGoogle Scholar
  32. 32.
    Karpelowsky JS, Millar AJ, van der Graaf N, van Bogerijen G, Zar HJ (2012) Comparison of in-hospital morbidity and mortality in HIV-infected and uninfected children after surgery. Pediatr Surg Int 28(10):1007–1014PubMedCrossRefGoogle Scholar
  33. 33.
    Kigera JWM, Straetemans M, Vuhaka SK, Nagel IM, Naddumba EK, Boer K (2012) Is there an increased risk of post-operative surgical site infection after orthopaedic surgery in HIV patients? A systematic review and meta-analysis. PLoS ONE 7(8):e42254PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Liu BC, Zhang L, Su JS, Tsun A, Li B (2014) Treatment of postoperative infectious complications in patients with human immunodeficiency virus infection. World J Emerg Med 5(2):103–106PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Capocasale E, De Vecchi E, Mazzoni MP et al (2014) Surgical site and early urinary tract infections in 1000 kidney transplants with antimicrobial perioperative prophylaxis. Transplant Proc 46(10):3455–3458PubMedCrossRefGoogle Scholar
  36. 36.
    Galindo Sacristan P, Marfil PA, Osorio Moratalla JM et al (2013) Predictive factors of infection in the first year after kidney transplantation. Transplant Proc 45(10):3620–3623PubMedCrossRefGoogle Scholar
  37. 37.
    Nakamura T, Mitomi H, Ihara A et al (2008) Risk factors for wound infection after surgery for colorectal cancer. World J Surg 32(6):1138–1141PubMedCrossRefGoogle Scholar
  38. 38.
    Hirakawa H, Hasegawa Y, Hanai N, Ozawa T, Hyodo I, Suzuki M (2013) Surgical site infection in clean-contaminated head and neck cancer surgery: risk factors and prognosis. Eur Arch Otorhinolaryngol 270(3):1115–1123PubMedCrossRefGoogle Scholar
  39. 39.
    Penel N, Fournier C, Lefebvre D, Lefebvre J-L (2005) Multivariate analysis of risk factors for wound infection in head and neck squamous cell carcinoma surgery with opening of mucosa. Study of 260 surgical procedures. Oral Oncol Extra 41(3):35–44CrossRefGoogle Scholar
  40. 40.
    World Health Organization (WHO) (2016) Global guidelines on the prevention of surgical site infection. Geneva, WHO Document Production Services (URL: http://www.who.int/gpsc/ssi-prevention-guidelines/en/ ) Google Scholar
  41. 41.
    Webster J, Croger S, Lister C, Doidge M, Terry MJ, Jones I (2010) Use of face masks by non-scrubbed operating room staff: a randomized controlled trial. Anz J Surg 80(3):169–173PubMedCrossRefGoogle Scholar
  42. 42.
    Cho M, Kang J, Kim IK, Lee KY, Sohn SK (2014) Underweight body mass index as a predictive factor for surgical site infections after laparoscopic appendectomy. Yonsei Med J 55(6):1611–1616PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Correia MI, Waitzberg DL (2003) The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin Nutr 22(3):235–239PubMedCrossRefGoogle Scholar
  44. 44.
    Kimura Y, Tsujinaka T, Fujitani K et al (2011) A randomized controlled phase III trial to evaluate the effect of preoperative enteral immunonutrition on the surgical site infection after total gastrectomy (OGSG0507). J Clin Oncol 29(4 Suppl 1):74CrossRefGoogle Scholar
  45. 45.
    Shibata Y (2011) Efficacy of perioperative immunonutritional support with immune-modulating nutrients for postoperative infection-related complications, such as surgical site infection, in elective gastrointestinal cancer surgery. J Clin Oncol 29(15 Suppl):e19716CrossRefGoogle Scholar
  46. 46.
    Fujitani K, Tsujinaka T, Fujita J et al (2012) Prospective randomized trial of preoperative enteral immunonutrition followed by elective total gastrectomy for gastric cancer. Br J Surg 99(5):621–629PubMedCrossRefGoogle Scholar
  47. 47.
    Okabayashi T, Nishimori I, Sugimoto T et al (2008) Effects of branched-chain amino acids-enriched nutrient support for patients undergoing liver resection for hepatocellular carcinoma. J Gastroenterol Hepatol 23(12):1869–1873PubMedCrossRefGoogle Scholar
  48. 48.
    Lewis SJ, Egger M, Sylvester PA, Thomas S (2001) Early enteral feeding versus "nil by mouth" after gastrointestinal surgery: systematic review and meta-analysis of controlled trials. BMJ 323(7316):773–776PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Rädle J, Rau B, Kleinschmidt S, Zeuzem S (2007) Operatives Risiko bei hepatologischen und gastroenterologischen Erkrankungen. Dtsch Arztebl Int 104(26):A1914–A1921Google Scholar
  50. 50.
    Murray BW, Huerta S, Dineen S, Anthony T (2010) Surgical site infection in colorectal surgery: a review of the nonpharmacologic tools of prevention. J Am Coll Surg 211(6):812–822PubMedCrossRefGoogle Scholar
  51. 51.
    Anthony T, Murray BW, Sum-Ping JT et al (2011) Evaluating an evidence-based bundle for preventing surgical site infection: a randomized trial. Arch Surg 146(3):263–269PubMedCrossRefGoogle Scholar
  52. 52.
    Fry DE (2011) Colon preparation and surgical site infection. Am J Surg 202(2):225–232PubMedCrossRefGoogle Scholar
  53. 53.
    Matsou A, Vrakas G, Doulgerakis M, Hatzimisios K, Zandes N, Saliangas K (2011) Mechanical bowel preparation before elective colorectal surgery: is it necessary? Tech Coloproctol 15(1):59–62CrossRefGoogle Scholar
  54. 54.
    Fry DE (2013) The prevention of surgical site infection in elective colon surgery. Scientifica (Cairo).  https://doi.org/10.1155/2013/896297 CrossRefGoogle Scholar
  55. 55.
    Cao F, Li J, Li F (2012) Mechanical bowel preparation for elective colorectal surgery: updated systematic review and meta-analysis. Int J Colorectal Dis 27(6):803–810PubMedCrossRefGoogle Scholar
  56. 56.
    Zhu QD, Zhang QY, Zeng QQ, Yu ZP, Tao CL, Yang WJ (2010) Efficacy of mechanical bowel preparation with polyethylene glycol in prevention of postoperative complications in elective colorectal surgery: a meta-analysis. Int J Colorectal Dis 25(2):267–275PubMedCrossRefGoogle Scholar
  57. 57.
    Kim YW, Choi EH, Kim IY, Kwon HJ, Ahn SK (2014) The impact of mechanical bowel preparation in elective colorectal surgery: a propensity score matching analysis. Yonsei Med J 55(5):1273–1280PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kiran RP, Murray AC, Chiuzan C, Estrada D, Forde K (2015) Combined preoperative mechanical bowel preparation with oral antibiotics significantly reduces surgical site infection, anastomotic leak, and ileus after colorectal surgery. Ann Surg 262(3):416–425PubMedCrossRefGoogle Scholar
  59. 59.
    Tanner J, Norrie P, Melen K (2011) Preoperative hair removal to reduce surgical site infection. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD004122.pub4 PubMedCrossRefGoogle Scholar
  60. 60.
    Faruquzzaman HS, Mazumder S (2012) Surgical site infections in relation to the timing of shaving among the gastrointestinal emergency patients through the midline incisions-a randomized controlled clinical trial. J Med Microbiol Diagn 1:111Google Scholar
  61. 61.
    Kramer A, Assadian O, Gruber B, Lademann J (2008) Prävention von postoperativen Wundinfektionen, Teil 1: Präoperative Maßnahmen – Einfluss der Haarentfernung. Hyg Med 33(10):402–407Google Scholar
  62. 62.
    National Institute for Health and Clinical Excellence (NICE) (2008) Surgical site infection: prevention and treatment of surgical site infection (update 2017). Agency for Healthcare Research and Quality (AHRQ), Rockville (URL: https://www.nice.org.uk/guidance/cg74 ) Google Scholar
  63. 63.
    Toon CD, Sinha S, Davidson BR, Gurusamy KS (2013) Early versus delayed post-operative bathing or showering to prevent wound complications. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD010075.pub3 CrossRefPubMedGoogle Scholar
  64. 64.
    Hadiati Diah R, Hakimi M, Nurdiati Detty S, Ota E (2014) Skin preparation for preventing infection following caesarean section. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD007462.pub2 PubMedCrossRefGoogle Scholar
  65. 65.
    Webster J, Osborne S (2012) Preoperative bathing or showering with skin antiseptics to prevent surgical site infection. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD004985.pub5 CrossRefPubMedGoogle Scholar
  66. 66.
    Chiang HY, Kamath AS, Pottinger JM et al (2014) Risk factors and outcomes associated with surgical site infections after craniotomy or craniectomy. J Neurosurg 120(2):509–521PubMedCrossRefGoogle Scholar
  67. 67.
    Shepard J, Ward W, Milstone A et al (2013) Financial impact of surgical site infections on hospitals: the hospital management perspective. JAMA Surg 148(10):907–914PubMedCrossRefGoogle Scholar
  68. 68.
    Meyer E, Weitzel-Kage D, Sohr D, Gastmeier P (2011) Impact of department volume on surgical site infections following arthroscopy, knee replacement or hip replacement. BMJ Qual Saf 20(12):1069–1074PubMedCrossRefGoogle Scholar
  69. 69.
    Gastmeier P, Sohr D, Breier A, Behnke M, Geffers C (2011) Prolonged duration of operation: an indicator of complicated surgery or of surgical (mis)management? Infection 39(3):211–215PubMedCrossRefGoogle Scholar
  70. 70.
    Browne JA, Pietrobon R, Olson SA (2009) Hip fracture outcomes: does surgeon or hospital volume really matter? J Trauma 66(3):809–814PubMedCrossRefGoogle Scholar
  71. 71.
    Ito M, Sugito M, Kobayashi A, Nishizawa Y, Tsunoda Y, Saito N (2009) Influence of learning curve on short-term results after laparoscopic resection for rectal cancer. Surg Endosc 23(2):403–408PubMedCrossRefGoogle Scholar
  72. 72.
    Arbeitskreis Krankenhaus- und Praxishygiene der AWMF (2010) AWMF-Leitlinien-Register 029/012 - Leitlinien zur Hygiene in Klinik und Praxis: OP-Kleidung und Patientenabdeckung (URL: http://www.awmf.org/leitlinien/detail/ll/029-012.html ) Google Scholar
  73. 73.
    Treakle AM, Thom KA, Furuno JP, Strauss SM, Harris AD, Perencevich EN (2009) Bacterial contamination of health care workers' white coats. Am J Infect Control 37(2):101–105PubMedCrossRefGoogle Scholar
  74. 74.
    Loh W, Ng VV, Holton J (2000) Bacterial flora on the white coats of medical students. J Hosp Infect 45(1):65–68PubMedCrossRefGoogle Scholar
  75. 75.
    Perry C, Marshall R, Jones E (2001) Bacterial contamination of uniforms. J Hosp Infect 48(3):238–241PubMedCrossRefGoogle Scholar
  76. 76.
    Zahra M, Yasaman F, Mahboubeh NN, Emran A (2013) Study on bacteria associated with white coats of healthcare workers in two tertiary hospitals, Mashhad, Iran. J Med Bacteriol 2:17–25Google Scholar
  77. 77.
    Munoz-Price LS, Arheart KL, Mills JP et al (2012) Associations between bacterial contamination of health care workers' hands and contamination of white coats and scrubs. Am J Infect Control 40(9):e245–e248PubMedCrossRefGoogle Scholar
  78. 78.
    Wiener-Well Y, Galuty M, Rudensky B, Schlesinger Y, Attias D, Yinnon AM (2011) Nursing and physician attire as possible source of nosocomial infections. Am J Infect Control 39(7):555–559PubMedCrossRefGoogle Scholar
  79. 79.
    Hubble MJ, Weale AE, Perez JV, Bowker KE, MacGowan AP, Bannister GC (1996) Clothing in laminar-flow operating theatres. J Hosp Infect 32(1):1–7PubMedCrossRefGoogle Scholar
  80. 80.
    Hamburger M Jr., Green MJ, Hamburger VG (1945) The problem of the dangerous carrier of hemolytic streptococci: II. Spread of infection by individuals with strongly positive nose cultures who expelled large numbers of hemolytic streptococci. J Infect Dis 77(2):96–108PubMedCrossRefGoogle Scholar
  81. 81.
    Sompolinsky D, Hermann Z, Oeding P, Rippon JE (1957) A series of postoperative infections. J Infect Dis 100(1):1–11PubMedCrossRefGoogle Scholar
  82. 82.
    McIntyre DM (1968) An epidemic of Streptococcus pyogenes puerperal and postoperative sepsis with an unusual carrier site--the anus. Am J Obstet Gynecol 101(3):308–314PubMedCrossRefGoogle Scholar
  83. 83.
    Schaffner W, Lefkowitz LB Jr., Goodman JS, Koenig MG (1969) Hospital outbreak of infections with group a streptococci traced to an asymptomatic anal carrier. N Engl J Med 280(22):1224–1225PubMedCrossRefGoogle Scholar
  84. 84.
    Dineen P, Drusin L (1973) Epidemics of postoperative wound infections associated with hair carriers. Lancet 2(7839):1157–1159PubMedCrossRefGoogle Scholar
  85. 85.
    Berkelman RL, Martin D, Graham DR et al (1982) Streptococcal wound infections caused by a vaginal carrier. JAMA 247(19):2680–2682PubMedCrossRefGoogle Scholar
  86. 86.
    Mastro TD, Farley TA, Elliott JA et al (1990) An outbreak of surgical-wound infections due to group A streptococcus carried on the scalp. N Engl J Med 323(14):968–972PubMedCrossRefGoogle Scholar
  87. 87.
    Kolmos HJ, Svendsen RN, Nielsen SV (1997) The surgical team as a source of postoperative wound infections caused by streptococcus pyogenes. J Hosp Infect 35(3):207–214PubMedCrossRefGoogle Scholar
  88. 88.
    Centers for Disease Control and Prevention (1999) Nosocomial group A streptococcal infections associated with asymptomatic health-care workers - Maryland and California, 1997. MMWR Morb Mortal Wkly Rep 48(8):163–166Google Scholar
  89. 89.
    Wenger PN, Brown JM, McNeil MM, Jarvis WR (1998) Nocardia farcinica sternotomy site infections in patients following open heart surgery. J Infect Dis 178(5):1539–1543PubMedCrossRefGoogle Scholar
  90. 90.
    Assadian O, Kramer A (2011) Durchführung der präoperativen Hautantiseptik im Rahmen der Prävention postoperativer Wundinfektionen und Auswahl der infrage kommenden Hautantiseptika. Hyg Med 36(5):186–190Google Scholar
  91. 91.
    Dumville JC, McFarlane E, Edwards P, Lipp A, Holmes A (2013) Preoperative skin antiseptics for preventing surgical wound infections after clean surgery. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD003949.pub3 CrossRefPubMedGoogle Scholar
  92. 92.
    Reichel M, Heisig P, Kohlmann T, Kampf G (2009) Alcohols for skin antisepsis at clinically relevant skin sites. Antimicrob Agents Chemother 53(11):4778–4782PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Maiwald M, Chan ES (2012) The forgotten role of alcohol: a systematic review and meta-analysis of the clinical efficacy and perceived role of chlorhexidine in skin antisepsis. PLoS ONE 7(9):e44277PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lee I, Agarwal RK, Lee BY, Fishman NO, Umscheid CA (2010) Systematic review and cost analysis comparing use of chlorhexidine with use of iodine for preoperative skin antisepsis to prevent surgical site infection. Infect Control Hosp Epidemiol 31(12):1219–1229PubMedCrossRefGoogle Scholar
  95. 95.
    Huang EY, Chen C, Abdullah F et al (2011) Strategies for the prevention of central venous catheter infections: an American Pediatric Surgical Association Outcomes and Clinical Trials Committee systematic review. J Pediatr Surg 46(10):2000–2011PubMedCrossRefGoogle Scholar
  96. 96.
    Edmiston CE Jr., Seabrook GR, Johnson CP, Paulson DS, Beausoleil CM (2007) Comparative of a new and innovative 2% chlorhexidine gluconate-impregnated cloth with 4% chlorhexidine gluconate as topical antiseptic for preparation of the skin prior to surgery. Am J Infect Control 35(2):89–96PubMedCrossRefGoogle Scholar
  97. 97.
    Ulmer M, Lademann J, Patzelt A et al (2014) New strategies for preoperative skin antisepsis. Skin Pharmacol Physiol 27(6):283–292PubMedCrossRefGoogle Scholar
  98. 98.
    Cordtz T, Schouenborg L, Laursen K et al (1989) The effect of incisional plastic drapes and redisinfection of operation site on wound infection following caesarean section. J Hosp Infect 13(3):267–272PubMedCrossRefGoogle Scholar
  99. 99.
    Gaspard F, Brassard P, Alam T et al (2013) Impact of an antimicrobial dressing in reducing surgical site infections in cardiac surgery patients. Wounds 25(7):178–185PubMedGoogle Scholar
  100. 100.
    Mueller SW, Krebsbach LE (2008) Impact of an antimicrobial-impregnated gauze dressing on surgical site infections including methicillin-resistant staphylococcus aureus infections. Am J Infect Control 36(9):651–655PubMedCrossRefGoogle Scholar
  101. 101.
    Müller G, Kramer A (2005) Effect of selected wound antiseptics on adult articular cartilage (bovine sesamoid bone) in the presence of Escherichia coli and Staphylococcus aureus. J Orthop Res 23(1):127–133PubMedCrossRefGoogle Scholar
  102. 102.
    Müller R (2008) Antiseptika bei HNO-Erkrankungen. Laryngorhinootologie 87(01):52–60PubMedCrossRefGoogle Scholar
  103. 103.
    Speaker MG, Menikoff JA (1991) Prophylaxis of endophthalmitis with topical povidone-iodine. Ophthalmology 98(12):1769–1775PubMedCrossRefGoogle Scholar
  104. 104.
    Hansmann F, Kramer A, Ohgke H, Strobel H, Müller M, Geerling G (2004) Polyhexamethylbiguanid (PHMB) zur präoperativen Antisepsis bei Kataraktoperation. Ophthalmologe 101(4):377–383PubMedCrossRefGoogle Scholar
  105. 105.
    von Eckardstein AS, Lim CH, Dohmen PM et al (2011) A randomized trial of a skin sealant to reduce the risk of incision contamination in cardiac surgery. Ann Thorac Surg 92(2):632–637CrossRefGoogle Scholar
  106. 106.
    Vierhout BP, Ott A, Reijnen MMPJ, Oskam J, Van Den Dungen JJAM, Zeebregts CJ (2014) Cyanoacrylate skin microsealant for preventing surgical site infection after vascular surgery: a discontinued randomized clinical trial. Surg Infect (Larchmt) 15(4):425–430CrossRefGoogle Scholar
  107. 107.
    Hanedan MO, Unal EU, Aksoyek A et al (2014) Comparison of two different skin preparation strategies for open cardiac surgery. J Infect Dev Ctries 8(7):885–890PubMedCrossRefGoogle Scholar
  108. 108.
    Dromzee E, Tribot-Laspiere Q, Bachy M, Zakine S, Mary P, Vialle R (2012) Efficacy of integuseal for surgical skin preparation in children and adolescents undergoing scoliosis correction. Spine 37(21):E1331–E1335PubMedCrossRefGoogle Scholar
  109. 109.
    Thomas E, Nugent E, McMeekin D (2013) Effectiveness of cyanoacrylate microbial sealant (CMS) in the reduction of surgical site infection in gynecologic oncology procedures: a single-center randomized study: interim analysis. Gynecol Oncol 130(1):e58–e59CrossRefGoogle Scholar
  110. 110.
    Doorly M, Choi J, Floyd A, Senagore A (2015) Microbial sealants do not decrease surgical site infection for clean-contaminated colorectal procedures. Tech Coloproctol 19(5):281–285PubMedCrossRefGoogle Scholar
  111. 111.
    Iyer A, Gilfillan I, Thakur S, Sharma S (2011) Reduction of surgical site infection using a microbial sealant: a randomized trial. J Thorac Cardiovasc Surg 142(2):438–442PubMedCrossRefGoogle Scholar
  112. 112.
    Pabon DF, Yost MJ, Melendez GC et al (2010) Novel bacterial immobilization compound effectively decreases bacterial counts in healthy volunteers. Am Surg 76(1):15–19PubMedGoogle Scholar
  113. 113.
    Lipp A, Phillips C, Harris P, Dowie I (2013) Cyanoacrylate microbial sealants for skin preparation prior to surgery. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD008062.pub2 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Whyte W, Hamblen DL, Kelly IG, Hambraeus A, Laurell G (1990) An investigation of occlusive polyester surgical clothing. J Hosp Infect 15(4):363–374PubMedCrossRefGoogle Scholar
  115. 115.
    DIN EN 13795-1 Operationskleidung und -abdecktücher - Anforderungen und Prüfverfahren - Teil 1: Operationsabdecktücher und -mäntel; Deutsche und Englische Fassung prEN 13795-1:2017.Google Scholar
  116. 116.
    Ortiz H, Armendariz P, Kreisler E et al (2012) Influence of rescrubbing before laparotomy closure on abdominal wound infection after colorectal cancer surgery: results of a multicenter randomized clinical trial. Arch Surg 147(7):614–620PubMedCrossRefGoogle Scholar
  117. 117.
    Ortiz H, Kreisler E, Armendariz P et al (2011) Influence of two policies of closure of the laparotomy wound on the incidence of incisional surgical site infection in colorectal cancer surgery. Results of a randomised trial. Colorectal Dis 13:1Google Scholar
  118. 118.
    Whyte W (1988) The role of clothing and drapes in the operating room. J Hosp Infect 11(Suppl C):2–17PubMedCrossRefGoogle Scholar
  119. 119.
    Cherif C, Günther E, Jatzwauck L, Mecheels S (Hrsg) (2009) Evaluierung von OP-Textilien. Ergebnisse einer Untersuchung nach hygienischen, ökonomischen und ökologischen Gesichtspunkten. Technische Universität Dresden. Institut für Textil- und Bekleidungstechnik, DresdenGoogle Scholar
  120. 120.
    Verkkala K, Eklund A, Ojajärvi J, Tiittanen L, Hoborn J, Mäkelä P (1998) The conventionally ventilated operating theatre and air contamination control during cardiac surgery – bacteriological and particulate matter control garment options for low level contamination. Eur J Cardiothorac Surg 14(2):206–210PubMedCrossRefGoogle Scholar
  121. 121.
    Werner HP, Hoborn J, Schön K, Petri E (1991) Influence of drape permeability on wound contamination during mastectomy. Eur J Surg 157(6):379–383PubMedGoogle Scholar
  122. 122.
    Moylan JA, Kennedy BV (1980) The importance of gown and drape barriers in the prevention of wound infection. Surg Gynecol Obstet 151(4):465–470PubMedGoogle Scholar
  123. 123.
    Webster J, Alghamdi A (2013) Use of plastic adhesive drapes during surgery for preventing surgical site infection. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD006353.pub4 CrossRefPubMedGoogle Scholar
  124. 124.
    Casey AL, Karpanen TJ, Nightingale P, Conway BR, Elliott TS (2015) Antimicrobial activity and skin permeation of iodine present in an iodine-impregnated surgical incise drape. J Antimicrob Chemother 70(8):2255–2260PubMedCrossRefGoogle Scholar
  125. 125.
    Kramer A, Assadian O, Lademann J (2010) Prevention of postoperative wound infections by covering the surgical field with iodine-impregnated incision drape (Ioban 2). GMS Krankenhhyg Interdiszip 5(2):Doc8.  https://doi.org/10.3205/dgkh000151 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Bejko J, Tarzia V, Carrozzini M et al (2015) Comparison of efficacy and cost of iodine impregnated drape vs. standard drape in cardiac surgery: study in 5100 patients. J Cardiovasc Transl Res 8(7):431–437PubMedCrossRefGoogle Scholar
  127. 127.
    Hübner N, Kampf G, Löffler H, Kramer A (2006) Effect of a 1 minute hand wash on the bactericidal efficacy of standard alcohols for surgical hand disinfection and on skin hydration. Int J Hyg Environ Health 208:285–291CrossRefGoogle Scholar
  128. 128.
    Kramer A, Hübner N, Below H, Heidecke CD, Assadian O (2008) Improving adherence to surgical hand preparation. J Hosp Infect 70(Suppl 1):35–43PubMedCrossRefGoogle Scholar
  129. 129.
    Kampf G, Kramer A, Suchomel M (2017) Lack of sustained efficacy for alcohol-based surgical hand rubs containing 'residual active ingredients' according to EN 12791. J Hosp Infect 95(2):163–168PubMedCrossRefGoogle Scholar
  130. 130.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2016) Händehygiene in Einrichtungen des Gesundheitswesens. Bundesgesundheitsblatt 59(9):1189–1220CrossRefGoogle Scholar
  131. 131.
    Misteli H, Weber WP, Reck S et al (2009) Surgical glove perforation and the risk of surgical site infection. Arch Surg 144(6):553–558PubMedCrossRefGoogle Scholar
  132. 132.
    Gerberding JL, Littell C, Tarkington A, Brown A, Schecter WP (1990) Risk of exposure of surgical personnel to patients' blood during surgery at San Francisco General Hospital. N Engl J Med 322(25):1788–1793PubMedCrossRefGoogle Scholar
  133. 133.
    Thomas S, Agarwal M, Mehta G (2001) Intraoperative glove perforation--single versus double gloving in protection against skin contamination. Postgrad Med J 77(909):458–460PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Goyal S, Singh M (2014) Incidence of perforation of single and double gloves during surgery. CIBTech J Surg 3(3):21–24Google Scholar
  135. 135.
    Daeschlein G, Kramer A, Arnold A, Ladwig A, Seabrook GR, Edmiston CE Jr (2011) Evaluation of an innovative antimicrobial surgical glove technology to reduce the risk of microbial passage following intraoperative perforation. Am J Infect Control 39(2):98–103PubMedCrossRefGoogle Scholar
  136. 136.
    Pitten F, Müller P, Heeg P, Kramer A (1998) Untersuchungen zur wiederholten Desinfizierbarkeit von Einweghandschuhen während des Tragens. Zentralbl Hyg Umweltmed 201(6):555–562Google Scholar
  137. 137.
    Assadian O, Kramer A, Ouriel K et al (2014) Suppression of surgeons' bacterial hand flora during surgical procedures with a new antimicrobial surgical glove. Surg Infect (Larchmt) 15(1):43–49CrossRefGoogle Scholar
  138. 138.
    Harnoss JC, Partecke LI, Heidecke CD, Hubner NO, Kramer A, Assadian O (2010) Concentration of bacteria passing through puncture holes in surgical gloves. Am J Infect Control 38(2):154–158PubMedCrossRefGoogle Scholar
  139. 139.
    Partecke LI, Goerdt AM, Langner I et al (2009) Incidence of microperforation for surgical gloves depends on duration of wear. Infect Control Hosp Epidemiol 30(5):409–414PubMedCrossRefGoogle Scholar
  140. 140.
    Hübner NO, Goerdt AM, Stanislawski N et al (2010) Bacterial migration through punctured surgical gloves under real surgical conditions. BMC Infect Dis 10:192PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Mischke C, Verbeek JH, Saarto A, Lavoie MC, Pahwa M, Ijaz S (2014) Gloves, extra gloves or special types of gloves for preventing percutaneous exposure injuries in healthcare personnel. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD009573.pub2 PubMedCrossRefGoogle Scholar
  142. 142.
    Korniewicz D, El-Masri M (2012) Exploring the benefits of double gloving during surgery. AORN J 95(3):328–336PubMedCrossRefGoogle Scholar
  143. 143.
    Tanner J, Parkinson H (2006) Double gloving to reduce surgical cross-infection. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd003087 CrossRefPubMedGoogle Scholar
  144. 144.
    Kampf G, Ostermeyer C (2009) A 1-minute hand wash does not impair the efficacy of a propanol-based hand rub in two consecutive surgical hand disinfection procedures. Eur J Clin Microbiol Infect Dis 28(11):1357–1362PubMedCrossRefGoogle Scholar
  145. 145.
    Kampf G, Ostermeyer C, Kohlmann T (2008) Bacterial population kinetics on hands during 2 consecutive surgical hand disinfection procedures. Am J Infect Control 36(5):369–374PubMedCrossRefGoogle Scholar
  146. 146.
    Hübner N, Rubbert K, Pohrt U, Heidecke C, Partecke L, Kramer A (2016) Einsatz wiederaufbereitbarer textiler Unterziehhandschuhe für medizinische Tätigkeiten: eine Machbarkeitsstudie. Zentralbl Chir 141(1):62–67PubMedGoogle Scholar
  147. 147.
    Parry MF, Grant B, Yukna M et al (2001) Candida osteomyelitis and diskitis after spinal surgery: an outbreak that implicates artificial nail use. Clin Infect Dis 32(3):352–357PubMedCrossRefGoogle Scholar
  148. 148.
    Passaro DJ, Waring L, Armstrong R et al (1997) Postoperative serratia marcescens wound infections traced to an out-of-hospital source. J Infect Dis 175(4):992–995PubMedCrossRefGoogle Scholar
  149. 149.
    Porteous J (2002) Artificial nails... very real risks. Can Oper Room Nurs J 20(3):16–17, 20-11PubMedGoogle Scholar
  150. 150.
    Nicolai P, Aldam CH, Allen PW (1997) Increased awareness of glove perforation in major joint replacement. A prospective, randomised study of regent biogel reveal gloves. J Bone Joint Surg Br 79(3):371–373PubMedCrossRefGoogle Scholar
  151. 151.
    TRBA 250 (2016) Biologische Arbeitsstoffe im Gesundheitswesen und in der Wohlfahrtspflege. GMBl (42):838Google Scholar
  152. 152.
    McHugh SM, Hill AD, Humphreys H (2011) Intraoperative technique as a factor in the prevention of surgical site infection. J Hosp Infect 78(1):1–4PubMedCrossRefGoogle Scholar
  153. 153.
    Hansis ML, Arens S, Baumann N et al (1999) Die chirurgische Verfahrenswahl kompensiert ein erhöhtes Infektionsrisiko Nationale prospektive Multizenterstudie bei 1813 Patienten zur Frage der infektprädisponierenden Faktoren bei knöchernen Eingriffen am Unterschenkel. Aktuelle Traumatol 29:144–151Google Scholar
  154. 154.
    Linni K, Ugurluoglu A, Hitzl W, Aspalter M, Hölzenbein T (2014) Bioabsorbable stent implantation vs. common femoral artery endarterectomy: early results of a randomized trial. J Endovasc Ther 21(4):493–502PubMedCrossRefGoogle Scholar
  155. 155.
    Roopram AD, Lind MY, Van Brussel JP et al (2013) Endovenous laser ablation versus conventional surgery in the treatment of small saphenous vein incompetence. J Vasc Surg 1(4):357–363PubMedGoogle Scholar
  156. 156.
    Kaafarani HM, Kaufman D, Reda D, Itani KM (2010) Predictors of surgical site infection in laparoscopic and open ventral incisional herniorrhaphy. J Surg Res 163(2):229–234PubMedCrossRefGoogle Scholar
  157. 157.
    Brandt C, Hott U, Sohr D, Daschner F, Gastmeier P, Rüden H (2008) Operating room ventilation with laminar airflow shows no protective effect on the surgical site infection rate in orthopedic and abdominal surgery. Ann Surg 248(5):695–700PubMedCrossRefGoogle Scholar
  158. 158.
    Kaoutzanis C, Leichtle SW, Mouawad NJ, Welch KB, Lampman RM, Cleary RK (2013) Postoperative surgical site infections after ventral/incisional hernia repair: a comparison of open and laparoscopic outcomes. Surg Endosc 27(6):2221–2230PubMedCrossRefGoogle Scholar
  159. 159.
    Boni L, Benevento A, Rovera F et al (2006) Infective complications in laparoscopic surgery. Surg Infect (Larchmt) 7(Suppl 2):S109–S111CrossRefGoogle Scholar
  160. 160.
    Perugini RA, Callery MP (2001) Complications of laparoscopic surgery. In: Holzheimer RG, John A, Mannick JA (Hrsg) Surgical treatment. Evidence-based and problem-oriented. Zuckschwerdt, MünchenGoogle Scholar
  161. 161.
    Sauerland S, Lefering R, Neugebauer EA (2004) Laparoscopic versus open surgery for suspected appendicitis. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD001546.pub3 PubMedCrossRefGoogle Scholar
  162. 162.
    Aziz O, Athanasiou T, Tekkis PP et al (2006) Laparoscopic versus open appendectomy in children: a meta-analysis. Ann Surg 243(1):17–27PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Ingraham AM, Cohen ME, Bilimoria KY, Pritts TA, Ko CY, Esposito TJ (2010) Comparison of outcomes after laparoscopic versus open appendectomy for acute appendicitis at 222 ACS NSQIP hospitals. Surgery 148(4):625–637PubMedCrossRefGoogle Scholar
  164. 164.
    Markides G, Subar D, Riyad K (2010) Laparoscopic versus open appendectomy in adults with complicated appendicitis: systematic review and meta-analysis. World J Surg 34(9):2026–2040PubMedCrossRefGoogle Scholar
  165. 165.
    Siddiqui S, Heidel RE, Angel CA, Kennedy AP Jr. (2012) Pyloromyotomy: randomized control trial of laparoscopic vs open technique. J Pediatr Surg 47(1):93–98PubMedCrossRefGoogle Scholar
  166. 166.
    Mohan HM, McDermott S, Fenelon L et al (2012) Plastic wound retractors as bacteriological barriers in gastrointestinal surgery: a prospective multi-institutional trial. J Hosp Infect 81(2):109–113PubMedCrossRefGoogle Scholar
  167. 167.
    Cheng KP, Roslani AC, Sehha N et al (2012) ALEXIS O-Ring wound retractor vs conventional wound protection for the prevention of surgical site infections in colorectal resections1. Colorectal Dis 14(6):e346–e351PubMedCrossRefGoogle Scholar
  168. 168.
    Reid K, Pockney P, Draganic B, Smith SR (2010) Barrier wound protection decreases surgical site infection in open elective colorectal surgery: a randomized clinical trial. Dis Colon Rectum 53(10):1374–1380PubMedCrossRefGoogle Scholar
  169. 169.
    Horiuchi T, Tanishima H, Tamagawa K et al (2007) Randomized, controlled investigation of the anti-infective properties of the Alexis retractor/protector of incision sites. J Trauma Acute Care Surg 62(1):212–215CrossRefGoogle Scholar
  170. 170.
    Nystrom PO, Brote L (1980) Effects of a plastic wound drape on contamination with enterobacteria and on infection after appendicectomy. Acta Chir Scand 146(1):65–70PubMedGoogle Scholar
  171. 171.
    Edwards JP, Ho AL, Tee MC, Dixon E, Ball CG (2012) Wound protectors reduce surgical site infection: a meta-analysis of randomized controlled trials. Ann Surg 256(1):53–59PubMedCrossRefGoogle Scholar
  172. 172.
    Pinkney TD, Calvert M, Bartlett DC et al (2013) Impact of wound edge protection devices on surgical site infection after laparotomy: multicentre randomised controlled trial (ROSSINI Trial). BMJ 347:f4305PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Nystrom PO, Broome A, Hojer H, Ling L (1984) A controlled trial of a plastic wound ring drape to prevent contamination and infection in colorectal surgery. Dis Colon Rectum 27(7):451–453PubMedCrossRefGoogle Scholar
  174. 174.
    Psaila JV, Wheeler MH, Crosby DL (1977) The role of plastic wound drapes in the prevention of wound infection following abdominal surgery. Br J Surg 64(10):729–732PubMedCrossRefGoogle Scholar
  175. 175.
    Gheorghe A, Calvert M, Pinkney TD et al (2012) Systematic review of the clinical effectiveness of wound-edge protection devices in reducing surgical site infection in patients undergoing open abdominal surgery. Ann Surg 255(6):1017–1029PubMedCrossRefGoogle Scholar
  176. 176.
    Khan S, Khan S, Chawla T, Murtaza G (2014) Harmonic scalpel versus electrocautery dissection in modified radical mastectomy: a randomized controlled trial. Ann Surg Oncol 21(3):808–814PubMedCrossRefGoogle Scholar
  177. 177.
    Rongetti RL, Oliveira e Castro Pde T, Vieira RA, Serrano SV, Mengatto MF, Fregnani JH (2014) Surgical site infection: an observer-blind, randomized trial comparing electrocautery and conventional scalpel. Int J Surg 12(7):681–687PubMedCrossRefGoogle Scholar
  178. 178.
    Anlar B, Karaman N, Dogan L, Ozaslan C, Atalay C, Altinok M (2013) The effect of harmonic scalpel, electrocautery, and scalpel use on early wound complications after modified radical mastectomy. Eur Surg 45(6):286–290CrossRefGoogle Scholar
  179. 179.
    Hasselgren PO, Hagberg E, Malmer H, Saljo A, Seeman T (1984) One instead of two knives for surgical incision. Does it increase the risk of postoperative wound infection? Arch Surg 119(8):917–920PubMedCrossRefGoogle Scholar
  180. 180.
    Tejwani NC, Immerman I (2008) Myths and legends in orthopaedic practice: are we all guilty? Clin Orthop Relat Res 466(11):2861–2872PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Fitzgerald RH Jr., Washington JA 2nd (1975) Contamination of the operative wound. Orthop Clin North Am 6(4):1105–1114PubMedGoogle Scholar
  182. 182.
    Hemker T (1982) Luftkeimzahlpegel während Operationen. Langenbecks Arch Chir 359(2):93–99CrossRefGoogle Scholar
  183. 183.
    Bible JE, O'Neill KR, Crosby CG, Schoenecker JG, McGirt MJ, Devin CJ (2013) Implant contamination during spine surgery. Spine J 13(6):637–640PubMedCrossRefGoogle Scholar
  184. 184.
    Kim BD, Hsu WK, De Oliveira GS Jr., Saha S, Kim JY (2014) Operative duration as an independent risk factor for postoperative complications in single-level lumbar fusion: an analysis of 4588 surgical cases. Spine 39(6):510–520PubMedCrossRefGoogle Scholar
  185. 185.
    Jeong SJ, Ann HW, Kim JK et al (2013) Incidence and risk factors for surgical site infection after gastric surgery: a multicenter prospective cohort study. Infect Chemother 45(4):422–430PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Matar WY, Jafari SM, Restrepo C, Austin M, Purtill JJ, Parvizi J (2010) Preventing infection in total joint arthroplasty. J Bone Joint Surg Am 92(Suppl 2):36–46PubMedCrossRefGoogle Scholar
  187. 187.
    Ridgeway S, Wilson J, Charlet A, Kafatos G, Pearson A, Coello R (2005) Infection of the surgical site after arthroplasty of the hip. J Bone Joint Surg Br 87(6):844–850PubMedCrossRefGoogle Scholar
  188. 188.
    Ku CH, Ku SL, Yin JC, Lee AJ (2005) Risk factors for sternal and leg surgical site infections after cardiac surgery in Taiwan. Am J Epidemiol 161(7):661–671PubMedCrossRefGoogle Scholar
  189. 189.
    Guggenbichler JP, Assadian O, Boeswald M, Kramer A (2011) Incidence and clinical implication of nosocomial infections associated with implantable biomaterials - catheters, ventilator-associated pneumonia, urinary tract infections. GMS Krankenhhyg Interdiszip 6(1):Doc18PubMedPubMedCentralGoogle Scholar
  190. 190.
    Gómez-Alonso A, García-Criado FJ, Parreño-Manchado FC et al (2007) Study of the efficacy of coated VICRYL plus® antibacterial suture (coated polyglactin 910 suture with triclosan) in two animal models of general surgery. J Infect 54(1):82–88PubMedCrossRefGoogle Scholar
  191. 191.
    Chu CC, Williams DF (1984) Effects of physical configuration and chemical structure of suture materials on bacterial adhesion: a possible link to wound infection. Am J Surg 147(2):197–204PubMedCrossRefGoogle Scholar
  192. 192.
    Arslan N, Terzi C, Atasoy G et al (2014) Effect of triclosan coated sutures on surgical site infection rate in pilonidal sinus disease: single-blinded randomized trial. Dis Colon Rectum 57(5):e255Google Scholar
  193. 193.
    Okada N, Nakamura T, Ambo Y et al (2014) Triclosan-coated abdominal closure sutures reduce the incidence of surgical site infections after pancreaticoduodenectomy. Surg Infect (Larchmt) 15(3):305–309CrossRefGoogle Scholar
  194. 194.
    Diener MK, Knebel P, Kieser M et al (2014) Effectiveness of triclosan-coated PDS plus versus uncoated PDS II sutures for prevention of surgical site infection after abdominal wall closure: the randomised controlled PROUD trial. Lancet 384(9938):142–152PubMedCrossRefGoogle Scholar
  195. 195.
    Thimour-Bergstrom L, Roman-Emanuel C, Schersten H, Friberg O, Gudbjartsson T, Jeppsson A (2013) Triclosan-coated sutures reduce surgical site infection after open vein harvesting in coronary artery bypass grafting patients: a randomized controlled trial. Eur J Cardiothorac Surg 44(5):931–938PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Justinger C, Slotta JE, Ningel S, Graber S, Kollmar O, Schilling MK (2013) Surgical-site infection after abdominal wall closure with triclosan-impregnated polydioxanone sutures: results of a randomized clinical pathway facilitated trial (NCT00998907). Surgery 154(3):589–595PubMedCrossRefGoogle Scholar
  197. 197.
    Mattavelli I, Nespoli L, Alfieri S et al (2013) Effect of Triclosan-coated suture on surgical site infection after colorectal surgery: final results of a multicenter, prospective, randomized trial. Surg Infect (Larchmt) 14(2):A-9/O13Google Scholar
  198. 198.
    Turtiainen J, Saimanen EI, Makinen KT et al (2012) Effect of triclosan-coated sutures on the incidence of surgical wound infection after lower limb revascularization surgery: a randomized controlled trial. World J Surg 36(10):2528–2534PubMedCrossRefGoogle Scholar
  199. 199.
    Huszar O, Baracs J, Toth M et al (2012) Comparison of wound infection rates after colon and rectal surgeries using triclosan-coated or bare sutures -- a multi-center, randomized clinical study. Magy Seb 65(3):83–91PubMedCrossRefGoogle Scholar
  200. 200.
    Williams N, Sweetland H, Goyal S, Ivins N, Leaper DJ (2011) Randomized trial of antimicrobial-coated sutures to prevent surgical site infection after breast cancer surgery. Surg Infect (Larchmt) 12(6):469–474CrossRefGoogle Scholar
  201. 201.
    Galal I, El-Hindawy K (2011) Impact of using triclosan-antibacterial sutures on incidence of surgical site infection. Am J Surg 202(2):133–138PubMedCrossRefGoogle Scholar
  202. 202.
    Berríos-Torres SI, Umscheid CA, Bratzler DW et al (2017) Centers for disease control and prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg 152(8):784–791.  https://doi.org/10.1001/jamasurg.2017.0904 PubMedCrossRefGoogle Scholar
  203. 203.
    Härle A (1981) Wunddrainage. Hyg Med 6(4):127–113Google Scholar
  204. 204.
    Khan S, Bawa T, Tanveer D, Raffique S (2014) Modified radical mastectomy using 1 vs 2 drains: a randomized controlled trial. Ann Surg Oncol 21(2 Suppl):68–68Google Scholar
  205. 205.
    Akinyoola AL, Odunsi A, Yusu MB (2012) Use of wound drains following open reduction and internal fixation of femoral shaft fractures. J Wound Care 21(6):279–280, 282-274PubMedCrossRefGoogle Scholar
  206. 206.
    Ali SA, Tahir SM, Soomoro AG, Siddiqui AJ, Memon AS (2010) Open cholecystectomy without intraperitoneal drainage. J Ayub Med Coll Abbottabad 22(2):29–31PubMedGoogle Scholar
  207. 207.
    Kaya E, Paksoy E, Ozturk E, Sigirli D, Bilgel H (2010) Subcutaneous closed-suction drainage does not affect surgical site infection rate following elective abdominal operations: a prospective randomized clinical trial. Acta Chir Belg 110(4):457–462PubMedCrossRefGoogle Scholar
  208. 208.
    Baier PK, Gluck NC, Baumgartner U, Adam U, Fischer A, Hopt UT (2010) Subcutaneous Redon drains do not reduce the incidence of surgical site infections after laparotomy. A randomized controlled trial on 200 patients. Int J Colorectal Dis 25(5):639–643PubMedCrossRefGoogle Scholar
  209. 209.
    de Jesus EC, Karliczek A, Matos D, Castro AA, Atallah ÁN (2004) Prophylactic anastomotic drainage for colorectal surgery. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD002100.pub2 PubMedCrossRefGoogle Scholar
  210. 210.
    von Roth P, Perka C, Dirschedl K et al (2012) Use of Redon drains in primary total hip arthroplasty has no clinically relevant benefits. Orthopedics 35(11):e1592–e1595CrossRefGoogle Scholar
  211. 211.
    Zhou XD, Li J, Xiong Y, Jiang LF, Li WJ, Wu LD (2013) Do we really need closed-suction drainage in total hip arthroplasty? A meta-analysis. Int Orthop 37(11):2109–2118PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Tang R, Chen HH, Wang YL et al (2001) Risk factors for surgical site infection after elective resection of the colon and rectum: a single-center prospective study of 2,809 consecutive patients. Ann Surg 234(2):181–189PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Imada S, Noura S, Ohue M et al (2013) Efficacy of subcutaneous penrose drains for surgical site infections in colorectal surgery. World J Gastrointest Surg 5(4):110–114PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Rao SB, Vasquez G, Harrop J et al (2011) Risk factors for surgical site infections following spinal fusion procedures: a case-control study. Clin Infect Dis 53(7):686–692PubMedCrossRefGoogle Scholar
  215. 215.
    Millbourn D, Cengiz Y, Israelsson LA (2009) Effect of stitch length on wound complications after closure of midline incisions: a randomized controlled trial. Arch Surg 144(11):1056–1059PubMedCrossRefGoogle Scholar
  216. 216.
    Deerenberg EB, Harlaar JJ, Steyerberg EW et al (2015) Small bites versus large bites for closure of abdominal midline incisions (STITCH): a double-blind, multicentre, randomised controlled trial. Lancet 386(10000):1254–1260PubMedCrossRefGoogle Scholar
  217. 217.
    Israelsson LA, Millbourn D (2012) Closing midline abdominal incisions. Langenbecks Arch Surg 397(8):1201–1207PubMedCrossRefGoogle Scholar
  218. 218.
    Gurusamy KS, Toon CD, Allen VB, Davidson BR (2014) Continuous versus interrupted skin sutures for non-obstetric surgery. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD010365.pub2 CrossRefPubMedGoogle Scholar
  219. 219.
    Biancari F, Tiozzo V (2010) Staples versus sutures for closing leg wounds after vein graft harvesting for coronary artery bypass surgery. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD008057.pub2 PubMedCrossRefGoogle Scholar
  220. 220.
    Dancer SJ (2009) The role of environmental cleaning in the control of hospital-acquired infection. J Hosp Infect 73(4):378–385PubMedCrossRefGoogle Scholar
  221. 221.
    Yezli S, Barbut F, Otter JA (2014) Surface contamination in operating rooms: a risk for transmission of pathogens? Surg Infect (Larchmt) 15(6):694–699CrossRefGoogle Scholar
  222. 222.
    Knochen H, Hubner NO, Below H et al (2010) Influence of floor disinfection on microbial and particulate burden measured under low turbulance air flow in ophthalmological operation theatres. Klin Monbl Augenheilkd 227(11):871–878PubMedCrossRefGoogle Scholar
  223. 223.
    Liguori G, Spagnoli G, Agozzino E et al (2005) Biological risk in the operating room: microbiological monitoring of the environment and analysis of the associated variables. Ann Ig 17(5):385–400PubMedGoogle Scholar
  224. 224.
    Javed I, Hafeez R, Zubair M, Anwar M, Tayyib M, Husnain S (2008) Microbiological surveillance of operation theatres and ICUs of a tertiary care hospital, Lahore. Biomedica 24:99–102Google Scholar
  225. 225.
    Gebremariam T, Declaro M (2014) Operating theaters as a source of nosocomial infection: a systematic review. Saudi J Health Sci 3(1):5–8CrossRefGoogle Scholar
  226. 226.
    Suzuki A, Namba Y, Matsuura M, Horisawa A (1984) Bacterial contamination of floors and other surfaces in operating rooms: a five-year survey. Epidemiol Infect 93(03):559–566Google Scholar
  227. 227.
    Alexander JW, Van Sweringen H, VanOss K, Hooker EA, Edwards MJ (2013) Surveillance of bacterial colonization in operating rooms. Surg Infect (Larchmt) 14(4):345–351CrossRefGoogle Scholar
  228. 228.
    Fukada T, Iwakiri H, Ozaki M (2008) Anaesthetists' role in computer keyboard contamination in an operating room. J Hosp Infect 70(2):148–153PubMedCrossRefGoogle Scholar
  229. 229.
    Griffith C, Cooper R, Gilmore J, Davies C, Lewis M (2000) An evaluation of hospital cleaning regimes and standards. J Hosp Infect 45(1):19–28PubMedCrossRefGoogle Scholar
  230. 230.
    Munoz-Price LS, Lubarsky DA, Arheart KL et al (2013) Interactions between anesthesiologists and the environment while providing anesthesia care in the operating room. Am J Infect Control 41(10):922–924PubMedCrossRefGoogle Scholar
  231. 231.
    National Health Service Estates (NHS) (2001) National standards of cleanliness for the NHSGoogle Scholar
  232. 232.
    Association of periOperative Registered Nurses (AORN) (2002) Recommended practices for environmental cleaning in the surgical practice setting. Aorn J 76(6):1071–1076CrossRefGoogle Scholar
  233. 233.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2004) Anforderungen an die Hygiene bei der Reinigung und Desinfektion von Flächen. Bundesgesundheitsblatt 47(1):51–61CrossRefGoogle Scholar
  234. 234.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2012) Anforderungen an die Hygiene bei der Aufbereitung von Medizinprodukten. Bundesgesundheitsblatt 55(10):1244–1310CrossRefGoogle Scholar
  235. 235.
    Altemeier WA, Culbertson WR, Hummel RP (1968) Surgical considerations of endogenous infections--sources, types, and methods of control. Surg Clin North Am 48(1):227–240PubMedCrossRefGoogle Scholar
  236. 236.
    Edwards LD (1976) The epidemiology of 2056 remote site infections and 1966 surgical wound infections occurring in 1865 patients: a four year study of 40,923 operations at Rush-Presbyterian-St. Luke's Hospital, Chicago. Ann Surg 184(6):758–766PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Noble W (2004) The skin microflora and microbial skin disease. Cambridge University Press, CambridgeGoogle Scholar
  238. 238.
    Faraday N, Rock P, Lin EE et al (2013) Past history of skin infection and risk of surgical site infection after elective surgery. Ann Surg 257(1):150–154PubMedCrossRefGoogle Scholar
  239. 239.
    Berthelot P, Grattard F, Cazorla C et al (2010) Is nasal carriage of staphylococcus aureus the main acquisition pathway for surgical-site infection in orthopaedic surgery? Eur J Clin Microbiol Infect Dis 29(4):373–382PubMedCrossRefGoogle Scholar
  240. 240.
    Rao N, Cannella BA, Crossett LS, Yates AJ Jr, McGough Iii RL, Hamilton CW (2011) Preoperative screening/decolonization for staphylococcus aureus to prevent orthopedic surgical site infection: prospective cohort study with 2-year follow-up. J Arthroplasty 26(8):1501–1507PubMedCrossRefGoogle Scholar
  241. 241.
    Levy PY, Ollivier M, Drancourt M, Raoult D, Argenson JN (2013) Relation between nasal carriage of staphylococcus aureus and surgical site infection in orthopedic surgery: the role of nasal contamination. A systematic literature review and meta-analysis. Orthop Traumatol Surg Res 99(6):645–651PubMedCrossRefGoogle Scholar
  242. 242.
    Hübner N, Wander K, Ryll S, Lindstedt G, Kramer A (2009) Antibiotikafreie Sanierung von MRSA-positivem Personal. GMS Krankenhhyg Interdiszip 4(2):1–4Google Scholar
  243. 243.
    Lamplot JD, Luther G, Mawdsley EL, Luu HH, Manning D (2015) Modified protocol decreases surgical site infections after total knee arthroplasty. J Knee Surg 28(5):395–403PubMedCrossRefGoogle Scholar
  244. 244.
    Bebko SP, Green DM, Awad SS (2015) Effect of a preoperative decontamination protocol on surgical site infections in patients undergoing elective orthopedic surgery with hardware implantation. JAMA Surg 150(5):390–395PubMedCrossRefGoogle Scholar
  245. 245.
    Phillips M, Rosenberg A, Shopsin B et al (2014) Preventing surgical site infections: a randomized, open-label trial of nasal mupirocin ointment and nasal povidone-iodine solution. Infect Control Hosp Epidemiol 35(07):826–832PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Johnson AJ, Kapadia BH, Daley JA, Molina CB, Mont MA (2013) Chlorhexidine reduces infections in knee arthroplasty. J Knee Surg 26(3):213–218PubMedCrossRefGoogle Scholar
  247. 247.
    Patel JB, Gorwitz RJ, Jernigan JA (2009) Mupirocin resistance. Clin Infect Dis 49(6):935–941PubMedCrossRefGoogle Scholar
  248. 248.
    Lee AS, Macedo-Vinas M, François P et al (2011) Impact of combined low-level mupirocin and genotypic chlorhexidine resistance on persistent methicillin-resistant staphylococcus aureus carriage after decolonization therapy: a Case-Control Study. Clin Infect Dis 52(12):1422–1430PubMedCrossRefGoogle Scholar
  249. 249.
    Bathoorn E, Hetem DJ, Alphenaar J, Kusters JG, Bonten MJ (2012) Emergence of high-level mupirocin resistance in coagulase-negative staphylococci associated with increased short-term mupirocin use. J Clin Microbiol 50(9):2947–2950PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Horner C, Mawer D, Wilcox M (2012) Reduced susceptibility to chlorhexidine in staphylococci: is it increasing and does it matter? J Antimicrob Chemother 67(11):2547–2559PubMedCrossRefGoogle Scholar
  251. 251.
    European Centre for Disease Prevention and Control (ECDC) (2013) Systematic review and evidence-based guidance on perioperative antibiotic prophylaxis. (Technical Report). ECDC, Stockholm (URL: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/Perioperative%20antibiotic%20prophylaxis%20-%20June%202013.pdf ) Google Scholar
  252. 252.
    Ullah B, Khan SA, Ahmed S, Pasha T (2013) Efficacy of preoperative single dose antibiotic in patients undergoing mesh repair for inguinal hernia. J Ayub Med Coll Abbottabad 25(1-2):103–105PubMedGoogle Scholar
  253. 253.
    Mazaki T, Mado K, Masuda H, Shiono M, Tochikura N, Kaburagi M (2014) A randomized trial of antibiotic prophylaxis for the prevention of surgical site infection after open mesh-plug hernia repair. Am J Surg 207(4):476–484PubMedCrossRefGoogle Scholar
  254. 254.
    Smith SC, Heal CF, Buttner PG (2014) Prevention of surgical site infection in lower limb skin lesion excisions with single dose oral antibiotic prophylaxis: a prospective randomised placebo-controlled double-blind trial. BMJ Open 4(7):e5270PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Gulluoglu BM, Guler SA, Ugurlu MU, Culha G (2013) Efficacy of prophylactic antibiotic administration for breast cancer surgery in overweight or obese patients: a randomized controlled trial. Ann Surg 257(1):37–43PubMedCrossRefGoogle Scholar
  256. 256.
    Sinha LM, Khan AH, Khan A, Yunus A (2012) Should the duration of antibiotics prophylaxis be prolonged in diabetes patients with isolated coronary artery bypass grafting? Pak J Med Health Sci 6(2):495–498Google Scholar
  257. 257.
    Jan N, Abbas Z, Ahmed MN, Tandon VR, Imram M, Parveen S, Bhat GH (2012) Prospective randomized open labeled study comparing prophylactic efficacy of parenteral single dose cefuroxime vs ampicillin-sulbactam in patients undergoing elective cholecystectomy. JK Sci 14(2):77Google Scholar
  258. 258.
    Iribarren O, Araujo M (2006) Effect of antimicrobial prophylaxis on the incidence of infections in clean surgical wounds in hospitals undergoing renovation. Infect Control Hosp Epidemiol 27(12):1372–1376PubMedCrossRefGoogle Scholar
  259. 259.
    Petignat C, Francioli P, Harbarth S et al (2008) Cefuroxime prophylaxis is effective in noninstrumented spine surgery: a double-blind, placebo-controlled study. Spine 33(18):1919–1924PubMedCrossRefGoogle Scholar
  260. 260.
    Kato D, Maezawa K, Yonezawa I et al (2006) Randomized prospective study on prophylactic antibiotics in clean orthopedic surgery in one ward for 1 year. J Orthop Sci 11(1):20–27PubMedCrossRefGoogle Scholar
  261. 261.
    Gillespie WJ, Walenkamp GH (2010) Antibiotic prophylaxis for surgery for proximal femoral and other closed long bone fractures. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD000244.pub2 CrossRefPubMedGoogle Scholar
  262. 262.
    Jones DJ, Bunn F, Bell-Syer SV (2014) Prophylactic antibiotics to prevent surgical site infection after breast cancer surgery. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD005360.pub4 CrossRefPubMedGoogle Scholar
  263. 263.
    Naqvi MA, Mehraj A, Ejaz R, Mian A (2013) Role of prophylactic antibiotics in low risk elective laparoscopic cholecystectomy: is there a need? J Ayub Med Coll Abbottabad 25(1-2):172–174PubMedGoogle Scholar
  264. 264.
    Wang J, Ji G, Yang Z et al (2013) Prospective randomized, double-blind, placebo controlled trial to evaluate infection prevention in adult patients after tension-free inguinal hernia repair. Int J Clin Pharmacol Ther 51(12):924–931PubMedCrossRefGoogle Scholar
  265. 265.
    Fahim F (2012) Chemoprophylaxis in surgical site infection: is it really necessary. J Postgrad Med Inst 26(4):408–411Google Scholar
  266. 266.
    Gregoriou O, Bakas P, Grigoriadis C, Creatsa M, Sofoudis C, Creatsas G (2012) Antibiotic prophylaxis in diagnostic hysteroscopy: is it necessary or not? Eur J Obstet Gynecol Reprod Biol 163(2):190–192PubMedCrossRefGoogle Scholar
  267. 267.
    Karanlik H, Kurul S, Saip P et al (2011) The role of antibiotic prophylaxis in totally implantable venous access device placement: results of a single-center prospective randomized trial. Am J Surg 202(1):10–15PubMedCrossRefGoogle Scholar
  268. 268.
    Sanabria A, Dominguez LC, Valdivieso E, Gomez G (2010) Antibiotic prophylaxis for patients undergoing elective laparoscopic cholecystectomy. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD005265.pub2 PubMedCrossRefGoogle Scholar
  269. 269.
    Ergul Z, Akinci M, Ugurlu C, Kulacoglu H, Yilmaz KB (2012) Prophylactic antibiotic use in elective inguinal hernioplasty in a trauma center. Hernia 16(2):145–151PubMedCrossRefGoogle Scholar
  270. 270.
    Yang Z (2001) Short-term versus long-term antimicrobial prophylaxis in abdominal surgery: a multicenter open randomized comparative trial. Zhonghua Wai Ke Za Zhi 39(10):770–772PubMedGoogle Scholar
  271. 271.
    Lewis RT, Weigand FM, Mamazza J, Lloyd-Smith W, Tataryn D (1995) Should antibiotic prophylaxis be used routinely in clean surgical procedures: a tentative yes. Surgery 118(4):742–746PubMedCrossRefGoogle Scholar
  272. 272.
    Wacha H, Hoyme U, Isenmann R et al (2010) Perioperative Antibiotika-Prophylaxe Empfehlungen einer Expertenkommission der Paul-Ehrlich-Gesellschaft für Chemotherapie e. V. Chemother J 19(3):70–84Google Scholar
  273. 273.
    Forouzannia SK, Karimi-Bondarabadi AA, Bagherinasab M, Sarebanhassanabadi M (2014) Comparison of the effectiveness of continuous versus intermittent cefazolin for the prevention of infection after off-pump coronary artery bypass graft. J Tehran Heart Cent 9(3):120–123PubMedPubMedCentralGoogle Scholar
  274. 274.
    Ahn BK, Lee KH (2013) Single-dose antibiotic prophylaxis is effective enough in colorectal surgery. ANZ J Surg 83(9):641–645PubMedCrossRefGoogle Scholar
  275. 275.
    Khalighi K, Aung TT, Elmi F (2014) The role of prophylaxis topical antibiotics in cardiac device implantation. Pacing Clin Electrophysiol 37(3):304–311PubMedCrossRefGoogle Scholar
  276. 276.
    Haga N, Ishida H, Ishiguro T et al (2012) A prospective randomized study to assess the optimal duration of intravenous antimicrobial prophylaxis in elective gastric cancer surgery. Int Surg 97(2):169–176PubMedPubMedCentralCrossRefGoogle Scholar
  277. 277.
    Rajabi-Mashhadi MT, Mousavi SH, K-M MH, Ghayour-Mobarhan M, Sahebkar A (2012) Optimum duration of perioperative antibiotic therapy in patients with acute non-perforated appendicitis: a prospective randomized trial. Asian Biomed (Res Rev News) 6(6):891–894Google Scholar
  278. 278.
    Hirokawa F, Hayashi M, Miyamoto Y et al (2013) Evaluation of postoperative antibiotic prophylaxis after liver resection: a randomized controlled trial. Am J Surg 206(1):8–15PubMedCrossRefGoogle Scholar
  279. 279.
    Lyimo FM, Massinde AN, Kidenya BR, Konje ET, Mshana SE (2013) Single dose of gentamicin in combination with metronidazole versus multiple doses for prevention of post-caesarean infection at Bugando Medical Centre in Mwanza, Tanzania: a randomized, equivalence, controlled trial. BMC Pregnancy Childbirth 13:123PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Oxman DA, Issa NC, Marty FM et al (2013) Postoperative antibacterial prophylaxis for the prevention of infectious complications associated with tube thoracostomy in patients undergoing elective general thoracic surgery: a double-blind, placebo-controlled, randomized trial. JAMA Surg 148(5):440–446PubMedCrossRefGoogle Scholar
  281. 281.
    Ali M, Nadeem M, Shah S, Khan M, Ahmad M, Ullah M (2012) Prolonged versus short course of antibiotic prophylaxis in clean general surgery. J Med Sci (Peshawar) 20(3):128–132Google Scholar
  282. 282.
    Lin MH, Pan SC, Wang JL et al (2011) Prospective randomized study of efficacy of 1-day versus 3-day antibiotic prophylaxis for preventing surgical site infection after coronary artery bypass graft. J Formos Med Assoc 110(10):619–626PubMedCrossRefGoogle Scholar
  283. 283.
    Tamayo E, Gualis J, Flórez S, Castrodeza J, Eiros Bouza JM, Álvarez FJ (2008) Comparative study of single-dose and 24-hour multiple-dose antibiotic prophylaxis for cardiac surgery. J Thorac Cardiovasc Surg 136(6):1522–1527PubMedCrossRefGoogle Scholar
  284. 284.
    Fujita S, Saito N, Yamada T et al (2007) Randomized, multicenter trial of antibiotic prophylaxis in elective colorectal surgery: single dose vs 3 doses of a second-generation cephalosporin without metronidazole and oral antibiotics. Arch Surg 142(7):657–661PubMedCrossRefGoogle Scholar
  285. 285.
    Gopinathan V, Sivanandan I (2012) Preventing surgical site infection (SSI) –are we getting it right with antibiotics? Anaesthesia 67(Suppl s2):47–48Google Scholar
  286. 286.
    Ryska O, Serclova Z, Konecna E et al (2012) Antibiotic prophylaxis administered without proper timing does not reduse surgical site infections after appendectomy. Poster session presented at the meeting of the Society of ColoproctologyGoogle Scholar
  287. 287.
    Zanetti G, Flanagan HL Jr., Cohn LH, Giardina R, Platt R (2003) Improvement of intraoperative antibiotic prophylaxis in prolonged cardiac surgery by automated alerts in the operating room. Infect Control Hosp Epidemiol 24(1):13–16PubMedCrossRefGoogle Scholar
  288. 288.
    Arbeitskreis Krankenhaus- und Praxishygiene der AWMF (2012) AWMF-Leitlinien-Register 029/022 - Leitlinien zur Hygiene in Klinik und Praxis: Perioperative Antibiotikaprophylaxe (URL: http://www.awmf.org/leitlinien/detail/ll/029-022.html ) Google Scholar
  289. 289.
    Parvizi J, Saleh KJ, Ragland PS, Pour AE, Mont MA (2008) Efficacy of antibiotic-impregnated cement in total hip replacement. Acta Orthop Scand 79(3):335–341CrossRefGoogle Scholar
  290. 290.
    Wang J, Zhu C, Cheng T et al (2013) A systematic review and meta-analysis of antibiotic-impregnated bone cement use in primary total hip or knee arthroplasty. PLoS ONE 8(12):e82745PubMedPubMedCentralCrossRefGoogle Scholar
  291. 291.
    Bistolfi A, Massazza G, Verné E et al (2011) Antibiotic-loaded cement in orthopedic surgery: a review. Isrn Orthop.  https://doi.org/10.5402/2011/290851 PubMedPubMedCentralCrossRefGoogle Scholar
  292. 292.
    Sadahiro S, Suzuki T, Tanaka A et al (2014) Comparison between oral antibiotics and probiotics as bowel preparation for elective colon cancer surgery to prevent infection: prospective randomized trial. Surgery 155(3):493–503PubMedCrossRefGoogle Scholar
  293. 293.
    Ishida H, Yokoyama M, Nakada H, Inokuma S, Hashimoto D (2001) Impact of oral antimicrobial prophylaxis on surgical site infection and methicillin-resistant staphylococcus aureus infection after elective colorectal surgery. Results of a prospective randomized trial. Surg Today 31(11):979–983PubMedCrossRefGoogle Scholar
  294. 294.
    Morris MS, Graham LA, Chu DI, Cannon JA, Hawn MT (2015) Oral antibiotic bowel preparation significantly reduces surgical site infection rates and readmission rates in elective colorectal surgery. Ann Surg 261(6):1034–1040PubMedCrossRefGoogle Scholar
  295. 295.
    Cannon JA, Altom LK, Deierhoi RJ et al (2012) Preoperative oral antibiotics reduce surgical site infection following elective colorectal resections. Dis Colon Rectum 55(11):1160–1166PubMedCrossRefGoogle Scholar
  296. 296.
    Solla J, Rothenberger D (1990) Preoperative bowel preparation. Dis Colon Rectum 33(2):154–159PubMedCrossRefGoogle Scholar
  297. 297.
    Nichols RL, Smith JW, Garcia RY, Waterman RS, Holmes JWC (1997) Current practices of preoperative bowel preparation among North American Colorectal Surgeons. Clin Infect Dis 24(4):609–619PubMedCrossRefGoogle Scholar
  298. 298.
    Horie T (2007) Randomized controlled trial on the necessity of chemical cleaning as preoperative preparation for Colorectal Cancer Surgery. Dokkyo J Med Sci 34(3):205–212Google Scholar
  299. 299.
    Pena-Soria M, Mayol J, Anula R, Arbeo-Escolar A, Fernandez-Represa J (2008) Single-blinded randomized trial of mechanical bowel preparation for colon surgery with primary intraperitoneal anastomosis. J Gastrointest Surg 12(12):2103–2109PubMedCrossRefGoogle Scholar
  300. 300.
    Pena-Soria M, Mayol J, Anula-Fernandez R, Arbeo-Escolar A, Fernandez-Represa JA (2007) Mechanical bowel preparation for elective colorectal surgery with primary Intraperitoneal anastomosis by a single surgeon: interim analysis of a prospective single-blinded randomized trial. J Gastrointest Surg 11(5):562–567PubMedCrossRefGoogle Scholar
  301. 301.
    Nelson RL, Glenny AM, Song F (2009) Antimicrobial prophylaxis for colorectal surgery. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD001181.pub3 CrossRefPubMedGoogle Scholar
  302. 302.
    Bellows CF, Mills KT, Kelly TN, Gagliardi G (2011) Combination of oral non-absorbable and intravenous antibiotics versus intravenous antibiotics alone in the prevention of surgical site infections after colorectal surgery: a meta-analysis of randomized controlled trials. Tech Coloproctol 15(4):385–395PubMedCrossRefGoogle Scholar
  303. 303.
    Barnes S, Spencer M, Graham D, Johnson HB (2014) Surgical wound irrigation: a call for evidence-based standardization of practice. Am J Infect Control 42(5):525–529PubMedCrossRefGoogle Scholar
  304. 304.
    Högele AM, Neu J (2011) Wundverschluss nach Wundspülung mit Octenisept® ohne Abflussmöglichkeit. Unfallchirurg 114(1):70–72PubMedCrossRefGoogle Scholar
  305. 305.
    Bauer B, Majic M, Rauthe S, Bröcker EB, Kerstan A (2012) Persistent swelling after flushing of an abscess with Octenisept®. Unfallchirurg 115(12):1116–1119PubMedCrossRefGoogle Scholar
  306. 306.
    Högele AM, Gill S, Körner M, Mayr D, Kernt B, Kanz KG (2011) Fat tissue necrosis after wound cleaning with Octenisept®. Notf Rettungsmed 14(7):567–570CrossRefGoogle Scholar
  307. 307.
    Wadhwa A, Kabon B, Fleischmann E, Kurz A, Sessler DI (2014) Supplemental postoperative oxygen does not reduce surgical site infection and major healing-related complications from bariatric surgery in morbidly obese patients: a randomized, blinded trial. Anesth Analg 119(2):357–365PubMedCrossRefGoogle Scholar
  308. 308.
    Stall A, Paryavi E, Gupta R, Zadnik M, Hui E, O'Toole RV (2013) Perioperative supplemental oxygen to reduce surgical site infection after open fixation of high-risk fractures: a randomized controlled pilot trial. J Trauma Acute Care Surg 75(4):657–663PubMedCrossRefGoogle Scholar
  309. 309.
    Duggal N, Poddatoori V, Noroozkhani S, Siddik-Ahmad RI, Caughey AB (2013) Perioperative oxygen supplementation and surgical site infection after cesarean delivery: a randomized trial. Obstet Gynecol 122(1):79–84PubMedCrossRefGoogle Scholar
  310. 310.
    Thibon P, Borgey F, Boutreux S, Hanouz JL, Le Coutour X, Parienti JJ (2012) Effect of perioperative oxygen supplementation on 30-day surgical site infection rate in abdominal, gynecologic, and breast surgery: the ISO 2 randomized controlled trial. Anesthesiology 117(3):504–511PubMedCrossRefGoogle Scholar
  311. 311.
    Bickel A, Gurevits M, Vamos R, Ivry S, Eitan A (2011) Perioperative hyperoxygenation and wound site infection following surgery for acute appendicitis: a randomized, prospective, controlled trial. Arch Surg 146(4):464–470PubMedCrossRefGoogle Scholar
  312. 312.
    Meyhoff CS, Wetterslev J, Jorgensen LN et al (2009) Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the proxi randomized clinical trial. JAMA 302(14):1543–1550PubMedCrossRefGoogle Scholar
  313. 313.
    Gardella C, Goltra LB, Laschansky E et al (2008) High-concentration supplemental perioperative oxygen to reduce the incidence of postcesarean surgical site infection: a randomized controlled trial. Obstet Gynecol 112(3):545–552PubMedCrossRefGoogle Scholar
  314. 314.
    Belda F, Aguilera L, García de la Asunción J et al (2005) Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA 294(16):2035–2042PubMedCrossRefGoogle Scholar
  315. 315.
    Pryor KO, Fahey IT, Lien CA, Goldstein PA (2004) Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA 291(1):79–87PubMedCrossRefGoogle Scholar
  316. 316.
    Qadan M, Akça O, Mahid SS, Hornung CA, Polk HC Jr (2009) Perioperative supplemental oxygen therapy and surgical site infection: a meta-analysis of randomized controlled trials. Arch Surg 144(4):359–366PubMedCrossRefGoogle Scholar
  317. 317.
    Ford CD, VanMoorleghem G, Menlove RL (1993) Blood transfusions and postoperative wound infection. Surgery 113(6):603–607PubMedGoogle Scholar
  318. 318.
    Horvath KA, Acker MA, Chang H et al (2013) Blood transfusion and infection after cardiac surgery. Ann Thorac Surg 95(6):2194–2201PubMedPubMedCentralCrossRefGoogle Scholar
  319. 319.
    Wong PF, Kumar S, Bohra A, Whetter D, Leaper DJ (2007) Randomized clinical trial of perioperative systemic warming in major elective abdominal surgery. Br J Surg 94(4):421–426PubMedCrossRefGoogle Scholar
  320. 320.
    Sessler DI (2001) Complications and treatment of mild hypothermia. Anesthesiology 95(2):531–543PubMedCrossRefGoogle Scholar
  321. 321.
    Melling AC, Ali B, Scott EM, Leaper DJ (2001) Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomised controlled trial. Lancet 358(9285):876–880PubMedCrossRefGoogle Scholar
  322. 322.
    Flores-Maldonado A, Medina-Escobedo CE, Rios-Rodriguez HMG, Fernández-Dominguez R (2001) Mild perioperative hypothermia and the risk of wound infection. Arch Med Res 32(3):227–231PubMedCrossRefGoogle Scholar
  323. 323.
    Verband der Elektrotechnik Elektronik Informationstechnik (VDE), Deutsche Gesellschaft für Biomedizinische Technik (DGMBT), Brandt S, Mühlsteff J, Imhoff M (2013) Akzidentelle Hypothermie –Diagnose, Prävention und Therapie. (VDE-Positionspapier ) VDE: Frankfurt am MainGoogle Scholar
  324. 324.
    Lehtinen SJ, Onicescu G, Kuhn KM, Cole DJ, Esnaola NF (2010) Normothermia to prevent surgical site infections after gastrointestinal surgery: holy grail or false idol? Ann Surg 252(4):696–704PubMedPubMedCentralGoogle Scholar
  325. 325.
    Weimann A (2016) Hygienische Aufgabenstellungen in medizinischen und sozialen Einrichtungen. In: Kramer A, Assadian O, Exner M, Hübner NO, Simon A (Hrsg) Krankenhaus- und Praxishygiene. Hygienemanagement und Infektionsprävention in medizinischen und sozialen Einrichtungen, 3. Aufl. Elsevier, MünchenGoogle Scholar
  326. 326.
    Latham R, Lancaster AD, Covington JF, Pirolo JS, Thomas CS Jr. (2001) The association of diabetes and glucose control with surgical-site infections among cardiothoracic surgery patients. Infect Control Hosp Epidemiol 22(10):607–612PubMedCrossRefGoogle Scholar
  327. 327.
    Chuang SC, Lee KT, Chang WT et al (2004) Risk factors for wound infection after cholecystectomy. J Formos Med Assoc 103(8):607–612PubMedGoogle Scholar
  328. 328.
    Al-Niaimi AN, Ahmed M, Burish N et al (2015) Intensive postoperative glucose control reduces the surgical site infection rates in gynecologic oncology patients. Gynecol Oncol 136(1):71–76PubMedCrossRefGoogle Scholar
  329. 329.
    Mejia J, Sadurní M, Vilà E, Zalbidea M, Cantillo J, Escolano F (2014) Diabetes mellitus as a risk factor for surgical site infection in colorectal surgery. Does preoperative and postoperative glycemic control matter? Eur J Anaesthesiol 31:205–206CrossRefGoogle Scholar
  330. 330.
    Liu Z, Qin H, Yang Z et al (2011) Randomised clinical trial: the effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery - a double-blind study. Aliment Pharmacol Ther 33(1):50–63PubMedCrossRefGoogle Scholar
  331. 331.
    Linton AH, Hinton MH (1988) Enterobacteriaceae associated with animals in health and disease. Soc Appl Bacteriol Symp Ser 17:71S–85SPubMedCrossRefGoogle Scholar
  332. 332.
    Wells CL (1990) Relationship between intestinal microecology and the translocation of intestinal bacteria. Antonie Van Leeuwenhoek 58(2):87–93PubMedCrossRefGoogle Scholar
  333. 333.
    Rayes N, Seehofer D, Hansen S et al (2002) Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients. Transplantation 74(1):123–127PubMedCrossRefGoogle Scholar
  334. 334.
    Rayes N, Hansen S, Seehofer D et al (2002) Early enteral supply of fiber and Lactobacilli versus conventional nutrition: a controlled trial in patients with major abdominal surgery. Nutrition 18(7/8):609–615PubMedCrossRefGoogle Scholar
  335. 335.
    Rayes N, Seehofer D, Muller AR, Hansen S, Bengmark S, Neuhaus P (2002) Influence of probiotics and fibre on the incidence of bacterial infections following major abdominal surgery - results of a prospective trial. Z Gastroenterol 40(10):869–876PubMedCrossRefGoogle Scholar
  336. 336.
    Sugawara G, Nagino M, Nishio H et al (2006) Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: a randomized controlled trial. Ann Surg 244(5):706–714PubMedPubMedCentralCrossRefGoogle Scholar
  337. 337.
    Aisu N, Tanimura SHU, Yamashita Y et al (2015) Impact of perioperative probiotic treatment for surgical site infections in patients with colorectal cancer. Exp Ther Med 10(3):966–972PubMedPubMedCentralCrossRefGoogle Scholar
  338. 338.
    Falcao de Arruda IS, de Aguilar-Nascimento JE (2004) Benefits of early enteral nutrition with glutamine and probiotics in brain injury patients. Clin Sci 106(3):287–292PubMedCrossRefGoogle Scholar
  339. 339.
    European Centre for Disease Prevention and Control (ECDC) (2016) Invasive cardiovascular infection by Mycobacterium chimaera potentially associated with heater-cooler units used during cardiac surgery. (Rapid Risk Assessment). ECDC, Stockholm (URL: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/RRA-mycobacterium-chimaera-November-2016.pdf ) Google Scholar
  340. 340.
    Robert Koch-Institut (RKI) (2016) Informationen zu einem internationalen Ausbruchsgeschehen mit nicht-tuberkulösen Mykobakterien im Zusammenhang mit Temperaturregulierungsgeräten bei Herzoperationen. RKI, Berlin (URL: https://www.rki.de/DE/Content/Infekt/Krankenhaushygiene/Aufb_MedProd/Mycobacterium_chimaera.html ). Zugegriffen: 6. Sept. 2017 Google Scholar
  341. 341.
    Sommerstein R, Schreiber PW, Diekema DJ et al (2017) Mycobacterium chimaera outbreak associated with heater-cooler devices: piecing the puzzle together. Infect Control Hosp Epidemiol 38(1):103–108PubMedCrossRefGoogle Scholar
  342. 342.
    Erichsen Andersson A, Petzold M, Bergh I, Karlsson J, Eriksson BI, Nilsson K (2014) Comparison between mixed and laminar airflow systems in operating rooms and the influence of human factors: experiences from a Swedish orthopedic center. Am J Infect Control 42(6):665–669PubMedCrossRefGoogle Scholar
  343. 343.
    Pasquarella C, Sansebastiano GE, Ferretti S et al (2007) A mobile laminar airflow unit to reduce air bacterial contamination at surgical area in a conventionally ventilated operating theatre. J Hosp Infect 66(4):313–319PubMedCrossRefGoogle Scholar
  344. 344.
    Friberg S, Ardnor B, Lundholm R, Friberg B (2003) The addition of a mobile ultra-clean exponential laminar airflow screen to conventional operating room ventilation reduces bacterial contamination to operating box levels. J Hosp Infect 55(2):92–97PubMedCrossRefGoogle Scholar
  345. 345.
    Ahl T, Dalen N, Jörbeck H, Hobom J (1995) Air contamination during hip and knee arthroplasties: horizontal laminar flow randomized vs. conventional ventilation. Acta Orthop Scand 66(1):17–20PubMedCrossRefGoogle Scholar
  346. 346.
    Taylor GJS, Bannister GC, Leeming JP (1995) Wound disinfection with ultraviolet radiation. J Hosp Infect 30(2):85–93PubMedCrossRefGoogle Scholar
  347. 347.
    Lidwell OM, Lowbury EJ, Whyte W, Blowers R, Stanley SJ, Lowe D (1983) Airborne contamination of wounds in joint replacement operations: the relationship to sepsis rates. J Hosp Infect 4(2):111–131PubMedCrossRefGoogle Scholar
  348. 348.
    Whyte W, Hodgson R, Tinkler J (1982) The importance of airborne bacterial contamination of wounds. J Hosp Infect 3(2):123–135PubMedCrossRefGoogle Scholar
  349. 349.
    Nelson JP (1976) Five years experience with operating room clean rooms and personnel-isolator systems. Med Instrum 10(6):277–281PubMedGoogle Scholar
  350. 350.
    Ritter MA, Stringer EA (1980) Laminar air-flow versus conventional air operating systems: a seven-year patient follow-up. Clin Orthop Relat Res 150:177–180Google Scholar
  351. 351.
    Diab-Elschahawi M, Berger J, Blacky A et al (2011) Impact of different-sized laminar air flow versus no laminar air flow on bacterial counts in the operating room during orthopedic surgery. Am J Infect Control 39(7):e25–e29PubMedCrossRefGoogle Scholar
  352. 352.
    Aboelela SW, Stone PW, Larson EL (2007) Effectiveness of bundled behavioural interventions to control healthcare-associated infections: a systematic review of the literature. J Hosp Infect 66(2):101–108PubMedCrossRefGoogle Scholar
  353. 353.
    Hirsch T, Hubert H, Fischer S et al (2012) Bacterial burden in the operating room: impact of airflow systems. Am J Infect Control 40(7):e228–e232PubMedCrossRefGoogle Scholar
  354. 354.
    Smith EB, Raphael IJ, Maltenfort MG, Honsawek S, Dolan K, Younkins EA (2013) The effect of laminar air flow and door openings on operating room contamination. J Arthroplasty 28(9):1482–1485PubMedCrossRefGoogle Scholar
  355. 355.
    Seropian R, Reynolds BM (1969) The importance of airborne contamination as a factor in postoperative wound infection. Arch Surg 98(5):654–658PubMedCrossRefGoogle Scholar
  356. 356.
    van Griethuysen AJ, Spies-van Rooijen NH, Hoogenboom-Verdegaal AM (1996) Surveillance of wound infections and a new theatre: unexpected lack of improvement. J Hosp Infect 34(2):99–106PubMedCrossRefGoogle Scholar
  357. 357.
    Hansen D, Krabs C, Benner D, Brauksiepe A, Popp W (2005) Laminar air flow provides high air quality in the operating field even during real operating conditions, but personal protection seems to be necessary in operations with tissue combustion. Int J Hyg Environ Health 208(6):455–460PubMedCrossRefGoogle Scholar
  358. 358.
    Talon D, Schoenleber T, Bertrand X, Vichard P (2006) Performances of different types of airflow system in operating theatre. Ann Chir 131(5):316–321PubMedCrossRefGoogle Scholar
  359. 359.
    Hell KRH, Allgoewer M (1976) Comparative bacteriologic study of sterile chamber and conventionally ventilated operating theater with stimulated operations. Helv Chir Acta 43(1-2):157–160PubMedGoogle Scholar
  360. 360.
    Iudicello S, Fadda A (2013) A road map to a comprehensive regulation on ventilation technology for operating rooms. Infect Control Hosp Epidemiol 34(08):858–860PubMedCrossRefGoogle Scholar
  361. 361.
    Lidwell OM, Elson RA, Lowbury EJL et al (1987) Ultraclean air and antibiotics for prevention of postoperative infection: a multicenter study of 8,052 joint replacement operations. Acta Orthop Scand 58(1):4–13PubMedCrossRefGoogle Scholar
  362. 362.
    Nelson JP (1977) The operating room environment and its influence on deep wound infection. In: Murray WR (Hrsg) The hip. Proceedings of the Fifth Open Scientific Meeting of the Hip Society. CV Mosby, St. Louis, S 129–146Google Scholar
  363. 363.
    Lidwell O, Lowbury E, Whyte W, Blowers R, Stanley S, Lowe D (1982) Effect of ultraclean air in operating rooms on deep sepsis in the joint after total hip or knee replacement: a randomised study. BMJ 285(6334):10–14PubMedPubMedCentralCrossRefGoogle Scholar
  364. 364.
    Miner AL, Losina E, Katz JN, Fossel AH, Platt R (2007) Deep infection after total knee replacement: impact of laminar airflow systems and body exhaust suits in the modern operating room. Infect Control Hosp Epidemiol 28(2):222–226PubMedCrossRefGoogle Scholar
  365. 365.
    Breier A-C, Brandt C, Sohr D, Geffers C, Gastmeier P (2011) Laminar airflow ceiling size: no impact on infection rates following hip and knee prosthesis. Infect Control Hosp Epidemiol 32(11):1097–1102PubMedCrossRefGoogle Scholar
  366. 366.
    Hooper GJ, Rothwell AG, Frampton C, Wyatt MC (2011) Does the use of laminar flow and space suits reduce early deep infection after total hip and knee replacement? The ten-year results of the New Zealand Joint Registry. J Bone Joint Surg Br 93(1):85–90PubMedCrossRefGoogle Scholar
  367. 367.
    Zheng H, Barnett AG, Merollini K et al (2014) Control strategies to prevent total hip replacement-related infections: a systematic review and mixed treatment comparison. BMJ Open 4(3):e3978PubMedPubMedCentralCrossRefGoogle Scholar
  368. 368.
    Bischoff P, Kubilay NZ, Allegranzi B, Egger M, Gastmeier P (2017) Effect of laminar airflow ventilation on surgical site infections: a systematic review and meta-analysis. Lancet Infect Dis 17(5):553–561PubMedCrossRefGoogle Scholar
  369. 369.
    Winkler T, Trampuz A, Hardt S, Janz V, Kleber C, Perka C (2014) Periprothetische Infektion nach Hüftendoprothetik. Orthopäde 43(1):70–78PubMedCrossRefGoogle Scholar
  370. 370.
    Uckay I, Lubbeke A, Emonet S et al (2009) Low incidence of haematogenous seeding to total hip and knee prostheses in patients with remote infections. J Infect 59(5):337–345PubMedCrossRefGoogle Scholar
  371. 371.
    Weist K, Krieger J, Rüden H (1988) Vergleichende Untersuchungen bei aseptischen und septischen Operationen unter besonderer Berücksichtigung von S. Aureus. Hyg Med 13:369–374Google Scholar
  372. 372.
    Harnoss J-C, Assadian O, Diener MK et al (2017) Mikrobielle Belastung in septischen und aseptischen Operationsräumen. Dtsch Arztebl Int 114(27-28):465–472PubMedPubMedCentralGoogle Scholar
  373. 373.
    Kuntz L, Mennicken R, Scholtes S (2014) Stress on the ward: evidence of safety tipping points in hospitals. Manage Sci 61(4):754–771CrossRefGoogle Scholar
  374. 374.
    Sprivulis PC, Da Silva JA, Jacobs IG, Frazer AR, Jelinek GA (2006) The association between hospital overcrowding and mortality among patients admitted via Western Australian emergency departments. Med J Aust 184(5):208–212PubMedGoogle Scholar
  375. 375.
    Deutsche Gesetzliche Unfallversicherung (DGUV), Spitzenverband der landwirtschaftlichen Sozialversicherung (LSV-SpV) (2013) Anforderungen der gesetzlichen Unfallversicherungsträger nach § 34 SGB VII an Krankenhäuser zur Beteiligung am Schwerstverletzungsartenverfahren (SAV) in der Fassung vom 1. Januar 2013 (URL: http://www.dguv.de/medien/landesverbaende/de/med_reha/documents/sav1.pdf ) Google Scholar
  376. 376.
    Cabrales RA, Cobo RB, Patiño YDB, Quintero MFO, Martínez JW, Upegui MLC (2014) Effectiveness of silver dressings in preventing surgical site infection in contaminated wounds. Iatreia 27(3):247–254Google Scholar
  377. 377.
    Siah CJ, Yatim J (2011) Efficacy of a total occlusive ionic silver-containing dressing combination in decreasing risk of surgical site infection: an RCT. J Wound Care 20(12):561–568PubMedCrossRefGoogle Scholar
  378. 378.
    Borkar NB, Khubalkar MV (2011) Are postoperative dressings necessary? J Wound Care 20(6):301PubMedCrossRefGoogle Scholar
  379. 379.
    Simek M, Grulichova J, Langova K, Lonsky V, Jecminkova L (2008) Silver-containing hydrofiber dressing versus topical antiseptics in the treatment of surgical site infection in cardiac surgery. Prospective randomized study. Poster session presented at the meeting of the European Wound Mangement Asseciation (EWMA).Google Scholar
  380. 380.
    Takahashi S, Takeyama K, Hashimoto K et al (2006) Disinfection by antiseptics in management of postoperative surgical wounds in urologic operations. Hinyokika Kiyo 52(2):89–94PubMedGoogle Scholar
  381. 381.
    Veiga-Filho J, Veiga DF, Sabino-Neto M et al (2012) Dressing wear time after reduction mammaplasty: a randomized controlled trial. Plast Reconstr Surg 129(1):1e–7ePubMedCrossRefGoogle Scholar
  382. 382.
    Zhou HB, Wu Y, Wang LQ, Zou SL, Qiao YZ, Wang LX (2012) Feasibility and safety of early removal of incisional dressings following thoracic surgery. Med Princ Pract 21(4):379–382PubMedCrossRefGoogle Scholar
  383. 383.
    Toon CD, Ramamoorthy R, Davidson BR, Gurusamy KS (2013) Early versus delayed dressing removal after primary closure of clean and clean-contaminated surgical wounds. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD010259.pub3 CrossRefPubMedGoogle Scholar
  384. 384.
    Dumville JC, Gray TA, Walter CJ, Sharp CA, Page T (2014) Dressings for the prevention of surgical site infection. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD003091.pub3 CrossRefPubMedGoogle Scholar
  385. 385.
    Towfigh S, Clarke T, Yacoub W et al (2011) Significant reduction of wound infections with daily probing of contaminated wounds: a prospective randomized clinical trial. Arch Surg 146(4):448–452PubMedCrossRefGoogle Scholar
  386. 386.
    Teshima H, Kawano H, Kashikie H et al (2009) A new hydrocolloid dressing prevents surgical site infection of median sternotomy wounds. Surg Today 39(10):848–854PubMedCrossRefGoogle Scholar
  387. 387.
    Maier S, Heidecke C, Kramer A (2014) Prävention von Surgical Site Infections (SSI). Zentralbl Chir 139(2):139–144CrossRefGoogle Scholar
  388. 388.
    Kramer A, Schilling M, Heidecke CD (2010) Infektionspräventions-Check-in und Infektionspräventions-Check-out zur Prävention nosokomialer Infektionen. Zentralbl Chir 135(01):44–48PubMedCrossRefGoogle Scholar
  389. 389.
    Wartman SA, Morlock LL, Malitz FE, Palm EA (1983) Patient understanding and satisfaction as predictors of compliance. Med Care 21(9):886–891PubMedCrossRefGoogle Scholar
  390. 390.
    Brandt C, Sohr D, Behnke M, Daschner F, Rüden H, Gastmeier P (2006) Reduction of surgical site infection rates with the help of benchmark data. Infect Control Hosp Epidemiol 27:1347–1351PubMedCrossRefGoogle Scholar
  391. 391.
    Geubbels ELPE, Nagelkerke NJD, Mintjes-De Groot AJ, Vandenbroucke-Grauls CMJE, Grobbee DE, De Boer AS (2006) Reduced risk of surgical site infections through surveillance in a network. Int J Qual Health Care 18(2):127–133PubMedCrossRefGoogle Scholar
  392. 392.
    Gastmeier P, Sohr D, Brandt C, Eckmanns T, Behnke M, Rüden H (2005) Reduction of orthopaedic wound infections in 21 hospitals. Arch Orthop Trauma Surg 125(8):526–530PubMedCrossRefGoogle Scholar
  393. 393.
    Bärwolff S, Sohr D, Geffers C et al (2006) Reduction of surgical site infections after Caesarean delivery using surveillance. J Hosp Infect 64(2):156–161PubMedCrossRefGoogle Scholar
  394. 394.
    Mabit C, Marcheix PS, Mounier M et al (2012) Impact of a surgical site infection (SSI) surveillance program in orthopedics and traumatology. Orthop Traumatol Surg Res 98(6):690–695PubMedCrossRefGoogle Scholar
  395. 395.
    Worth LJ, Bull AL, Spelman T, Brett J, Richards MJ (2015) Diminishing surgical site infections in Australia: time trends in infection rates, pathogens and antimicrobial resistance using a comprehensive Victorian surveillance program, 2002-2013. Infect Control Hosp Epidemiol 36(4):409–416PubMedCrossRefGoogle Scholar
  396. 396.
    Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen (NRZ) (Hrsg) (2017) Definitionen nosokomialer Infektionen für die Surveillance im Krankenhaus-Infektions-Surveillance-System (KISS-Definitionen). Robert Koch-Institut, BerlinGoogle Scholar
  397. 397.
    Le T, Dibley MJ, Nho VV, Archibald L, Jarvis WR, Sohn AH (2007) Reduction in surgical site infections in neurosurgical patients associated with a bedside hand hygiene program in Vietnam. Infect Control Hosp Epidemiol 28(5):583–588PubMedCrossRefGoogle Scholar
  398. 398.
    Weinberg M, Fuentes J, Ruiz AI et al (2001) Reducing infections among women undergoing cesarean section in colombia by means of continuous quality improvement methods. Arch Intern Med 161(19):2357–2365PubMedCrossRefGoogle Scholar
  399. 399.
    Pirotte BJ, Lubansu A, Bruneau M, Loqa C, Van Cutsem N, Brotchi J (2007) Sterile surgical technique for shunt placement reduces the shunt infection rate in children: preliminary analysis of a prospective protocol in 115 consecutive procedures. Childs Nerv Syst 23(11):1251–1261PubMedCrossRefGoogle Scholar
  400. 400.
    Levent T, Vandevelde D, Delobelle JM et al (2010) Infection risk prevention following total knee arthroplasty. Orthop Traumatol Surg Res 96(1):49–56PubMedCrossRefGoogle Scholar
  401. 401.
    Carboneau C, Benge E, Jaco MT, Robinson M (2010) A lean Six Sigma team increases hand hygiene compliance and reduces hospital-acquired MRSA infections by 51%. J Healthc Qual 32(4):61–70PubMedCrossRefGoogle Scholar
  402. 402.
    Corcoran S, Jackson V, Coulter-Smith S, Loughrey J, McKenna P, Cafferkey M (2013) Surgical site infection after cesarean section: implementing 3 changes to improve the quality of patient care. Am J Infect Control 41(12):1258–1263PubMedCrossRefGoogle Scholar
  403. 403.
    Lavu H, Klinge MJ, Nowcid LJ et al (2012) Perioperative surgical care bundle reduces pancreaticoduodenectomy wound infections. J Surg Res 174(2):215–221PubMedCrossRefGoogle Scholar
  404. 404.
    Trussell J, Gerkin R, Coates B et al (2008) Impact of a patient care pathway protocol on surgical site infection rates in cardiothoracic surgery patients. Am J Surg 196(6):883–889PubMedCrossRefGoogle Scholar
  405. 405.
    Tanner J, Padley W, Assadian O, Leaper D, Kiernan M, Edmiston C (2015) Do surgical care bundles reduce the risk of surgical site infections in patients undergoing colorectal surgery? A systematic review and cohort meta-analysis of 8,515 patients. Surgery 158(1):66–77PubMedCrossRefGoogle Scholar
  406. 406.
    Leaper DJ, Tanner J, Kiernan M, Assadian O, Edmiston CE (2014) Surgical site infection: poor compliance with guidelines and care bundles. Int Wound J 12(3):357–362PubMedCrossRefGoogle Scholar
  407. 407.
    von Hagen C, Hansis M (1994) Verhaltensprobleme in der Krankenhaushygiene. Traumatologie aktuell, Bd. 15. Thieme, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Personalised recommendations