Skip to main content

Advertisement

Log in

Image-based lung functional radiotherapy planning for non-small cell lung cancer

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

This simulation study assessed the feasibility and impact of incorporating additional information from lung perfusion single-photon emission computed tomography (SPECT) into intensity-modulated radiotherapy planning for the treatment of non-small cell lung cancer (NSCLC).

Methods

In this simulation study, data of 13 patients with stage I–III NSCLC previously treated by radio(chemo)therapy were used. The SPECT was fused together with radiotherapy planning CT. Functional lung regions (FL) and non-functional lung regions (nFL) were defined based on SPECT images. Four treatment plans were created for each patient: an IMRT and a VMAT plan with planning CT (anatomical plans), and an IMRT and a VMATplan which integrate the additional information from lung perfusion scintigraphy (function plans). Dosimetric parameters were compared between all plans for PTV parameters and normal tissue preservation, focusing on optimizing the lung volume receiving at least 20 Gy (V20Gy).

Results

Compared to anatomical plans, functional IMRT and functional VMAT plans reduced functional lung V20Gy in all cases of local and diffuse hypoperfusion patterns of SPECT defects. Similar results were observed for functional lung V30Gy and median dose to functional lung Dmean, but were not statistically significant in any group. A significant increase in non-functional lung V20Gy resulted in both functional plans. There were no significant differences in conformity or heterogeneity indices or PTV median doses between either pair of anatomical and functional plans.

Conclusion

The incorporation of functional imaging for radiotherapy planning in non-small cell lung cancer is feasible and appears to be beneficial in preserving a functional lung in non-small cell lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Marks LB, Bentzen SM, Deasy JO, Kong FM, Bradley JD, Vogelius IS, El Naqa I, Hubbs JL, Lebesque JV, Timmerman RD, Martel MK, Jackson A (2010) Radiation dose volume effects in the lung. Int J Radiat Oncol Biol Phys 1(76):S70–6

    Article  Google Scholar 

  2. Siva S, Thomas R, Callahan J, Hardcastle N, Pham D, Kron T, Hicks RJ, Mac Manus MP, Ball DL, Hofmann MS (2015) High-resolution pulmonary ventilation and perfusion PET/CT allows for functionally adapted intensity modulated radiotherapy in lung cancer. Radiother Oncol 115:157–162

    Article  Google Scholar 

  3. Ortholan C, Mornex F (2010) Normal tissue tolerance to external beam. Cancer Radiother 14:312–318

    Article  CAS  Google Scholar 

  4. Roeder F, Friedrich J, Timke C, Kappes J, Huber P, Krempien R, Debus J, Bischof M (2010) Correlation of patient-related factors and dose-volume histogram parameters with the onset of radiation pneumonitis in patients with small cell lung cancer. Strahlenther Onkol 186(3):149–156

    Article  Google Scholar 

  5. Agrawal S, Raj MK, Kheruka SC, Das KM, Gambhir S (2012) Utility of single photon emission computed tomography perfusion scans in radiation treatment planning of locally advanced lung cancers. Indian J Nucl Med 27(1):10–15

    Article  Google Scholar 

  6. Christian JA, Partridge M, Nioutsikou E, Cook G, McNair HA, Cronin B, Courbon F, Bedford JL, Brada M (2005) The incorporation of SPECT functional lung imaging into inverse radiotherapy planning for non-small cell lung cancer. Radiother Oncol 77(3):271–277

    Article  Google Scholar 

  7. Lavrenkov K, Christian JA, Partridge M, Niotsikou E, Cook G, Parker M, Bedford JL, Brada M (2007) A potential to reduce pulmonary toxicity: the use of perfusion SPECT with IMRT for functional lung avoidance in radiotherapy of non-small cell lung cancer. Radiother Oncol 83(2):156–162

    Article  Google Scholar 

  8. McGuire SM, Zhou S, Marks LB, Dewhirst M, Yin FF, Das SK (2006) A methodology for using SPECT to reduce intensity-modulated radiation therapy (IMRT) dose to functioning lung. Int J Radiat Oncol Biol Phys 66(5):1543–1552

    Article  Google Scholar 

  9. Shioyama Y, Jang SY, Liu HH, Guerrero T, Wang X, Gayed IW, Erwin WD, Liao Z, Chang JY, Jeter M, Yaremko BP, Borghero YO, Cox JD, Komaki R, Mohan R (2007) Preserving functional lung using perfusion imaging and intensity-modulated radiation therapy for advanced-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys 68(5):1349–1358

    Article  Google Scholar 

  10. The International Commission on Radiation Units and Measurements (2010) Report 83: Prescribing, Recording, and Reporting Photon-Beam Intensity Modulated Radiation Therapy (IMRT). J ICRU 10(1):17–26

  11. Knöös T, Kristensen I, Nilsson P (1998) Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index. Int J Radiat Oncol Biol Phys 42:1169–1176

    Article  Google Scholar 

  12. Mayo CS, Urie MM (2003) A systematic benchmark method for analysis and comparison of IMRT treatment planning algorithms. Med Dosim 28:235–242

    Article  Google Scholar 

  13. Benzen SM, Consine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB, Ten Haken RK, Yorke ED (2010) Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 76(3 Suppl):S3–S9

    Article  Google Scholar 

  14. Herando ML, Marks LB, Bentel GC, Zhou SM, Hollis D, Das SK, Fan M, Munley MT, Shafman TD, Anscher MS, Lind PA (2001) Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 51(3):650–659

    Article  Google Scholar 

  15. Kong (Spring) FM, Wang (2015) Nondosimetric Risk Factors for Radiation-Induced Lung Toxicity. Semin Radiat Oncol 25:100–109

    Article  Google Scholar 

  16. Palma DA, Senan S, Tsujino K, Barriger RB, Rengan R, Moreno M et al (2013) Predicting radiation pneumonitis after Chemoradiation therapy for lung Cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys 85:444–450

    Article  Google Scholar 

  17. Theuws JC, Kwa SL, Wagenaar AC et al (1998) Dose-effect relations for early local pulmonary injury after irradiation for malignant lymphoma and breast cancer. Radiother Oncol 48:33–43

    Article  CAS  Google Scholar 

  18. Tsoutsou PG, Koukourakis M (2006) Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys 66(5):1281–1293

    Article  Google Scholar 

  19. St-Hilaire J, Lavoie C, Dagnault A, Beaulieu F, Morin F, Beaulieu L, Tremblay D (2011) Functional avoidance of lung in plan optimization with an aperture-based inverse planning system. Radiother Oncol 100(3):390–395

    Article  Google Scholar 

  20. Dhami G, Zeng J, Vesselle HJ, Kinahan PE, Miyaoka RS, Patel SA, Rengan R, Bowen SR (2017) Framework for radiation pneumonitis risk stratification based on anatomic and perfused lung dosimetry. Strahlenther Onkol 193(5):410–418

    Article  Google Scholar 

  21. Siva S, Callahan J, Kron T, Martin OA, MacManus MP, Ball DL, Hicks RJ, Hofman MS (2014) A prospective observational study of Gallium-68 ventilation and perfusion PET/CT during and after radiotherapy in patients with non-small cell lung cancer. BMC Cancer 14(2):740

    Article  Google Scholar 

  22. Yuan ST, Frey KA, Gross MD, Hayman JA, Arenberg D, Cai XW, Ramnath N, Hassan K, Moran J, Eisbruch A, Ten Haken RK, Kong FM (2012) Changes in global function and regional ventilation and perfusion on SPECT during the course of radiotherapy in patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2011.07.044

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bucknell NW, Hardcastle N, Bressel M, Hofman MS, Kron T, Ball D, Siva S (2018) Functional lung imaging in radiation therapy for lung cancer: a systematic review and meta-analysis. Radiother Oncol 129(2):196–208

    Article  Google Scholar 

  24. Farr KP et al (2015) Inclusion of functional information from perfusion SPECT improves predictive value of dose-volume parameters in lung toxicity outcome after radiotherapy for non-small cell lung cancer: a prospective study. Radiother Oncol 117:9–16

    Article  Google Scholar 

  25. Lee E et al (2017) Functional lung avoidance and response-adaptive escalation (FLARE) RT: multimodality plan dosimetry of a precision radiation oncology strategy. Med Phys 44:3418–3429

    Article  CAS  Google Scholar 

  26. Seppenwoolde Y, Engelsman M, De Jaeger K, Muller SH, Baas P, McShan DL, Fraass BA, Kessler ML, Belderbos JS, Boersma LJ, Lebesque JV (2002) Optimizing radiation treatment plans for lung cancer using lung perfusion information. Radiother Oncol 63(2):165–177

    Article  Google Scholar 

  27. Matuszak MM, Matrosic C, Jarema D, McShan DL, Stenmark MH, Owen D, Jolly S, Kong FS, Ten Haken RK (2016) Priority-driven plan optimization in locally advanced lung patients based on perfusion SPECT imaging. Adv Radiat Oncol 1(4):281–289

    Article  Google Scholar 

  28. Meng X, Frey K, Matuszak M, Paul S, Ten Haken R, Yu J, Kong FM (2014) Changes in functional lung regions during the course of radiation therapy and their potential impact on lung dosimetry for non-small cell lung cancer. Int J Radiat Oncol Biol Phys 89(1):145–151

    Article  Google Scholar 

  29. Yuan S, Frey KA, Gross MD (2011) Semiquantification and classification of local pulmonary function by V/Q single photon emission computed tomography in patients with non-small cell lung cancer: potential indication for radiotherapy planning. J Thorac Oncol 6:71–78

    Article  Google Scholar 

  30. Seppenwoolde Y et al (2000) Radiation dose-effect relations and local recovery in perfusion for patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 47:681–690

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faegheh S. Mounessi.

Ethics declarations

Conflict of interest

F.S. Mounessi, J. Eckardt, A. Holstein, S. Ewig, and S. Könemann declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mounessi, F.S., Eckardt, J., Holstein, A. et al. Image-based lung functional radiotherapy planning for non-small cell lung cancer. Strahlenther Onkol 196, 151–158 (2020). https://doi.org/10.1007/s00066-019-01518-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-019-01518-6

Keywords

Navigation