Skip to main content

Advertisement

Log in

An evaluation of the effect of bortezomib on radiation-induced urinary bladder dysfunction

Untersuchung der Wirkung von Bortezomib auf die strahleninduzierte Harnblasenfunktionsstörung

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The urinary bladder is one major organ at risk in radiotherapy of pelvic malignancies. The radiation response manifests in early and chronic changes in bladder function. These are based on inflammatory effects and changes in urothelial cell function and proliferation. This study evaluates the effect of bortezomib as an anti-proliferative and anti-inflammatory compound in an established mouse bladder model. The early radiation-induced bladder dysfunction in the mouse occurs in two phases during the first month after irradiation (phase I: day 0–15, phase II: days 16–30).

Materials and methods

Daily bortezomib injections (0.02 mg/ml, subcutaneously) were administered between days 0–15 or 15–30 in separate groups. Single graded radiation doses were administered in five dose groups. Cystometry was carried out before (individual control) and during the first month after irradiation. When bladder capacity was decreased by ≥50%, mice were considered as responders. Statistical analysis was performed by the SPSS software version 24.

Results

Daily bortezomib injections between days 0–15 resulted in a significant decrease in responders for phase I. There was no significant effect with daily bortezomib injections between days 16–30.

Conclusion

Two separate waves of acute radiation-induced urinary bladder dysfunction have distinct mechanisms that need further biological studies.

Zusammenfassung

Zielsetzung

Die Harnblase ist ein wichtiges Risikoorgan bei der Strahlentherapie von Malignomen im Beckenbereich. Die Strahlungsreaktion äußert sich in frühen und chronischen Veränderungen der Blasenfunktion. Diese basieren auf entzündlichen Effekten und Änderungen in der Funktion und Proliferation der Urothelzellen. In dieser Studie wird die Wirkung von Bortezomib als antiproliferative und entzündungshemmende Verbindung in einem etablierten Mausblasenmodell untersucht. Die frühe strahleninduzierte Blasenfunktionsstörung der Maus tritt im ersten Monat nach der Bestrahlung in zwei Phasen auf (Phase I: Tag 0–15, Phase II: Tag 16–30).

Material und Methoden

Tägliche Bortezomibinjektionen (0,02 mg/ml, subkutan) wurden an den Tagen 0–15 oder 16–30 in separaten Gruppen angewendet. Einzelne abgestufte Bestrahlungsdosen wurden in fünf Dosisgruppen angewendet. Zystometrien wurden vor (Einzelkontrolle) und im ersten Monat nach der Bestrahlung durchgeführt. Wenn die Blasenkapazität um ≥50 % verringert wurde, wurden Mäuse als Responder betrachtet. Die statistische Analyse wurde mit der SPSS-Software Version 24 durchgeführt.

Ergebnisse

Tägliche Bortezomibinjektionen an den Tagen 0–15 führten zu einer signifikanten Abnahme der Responder in Phase I. Bei den täglichen Bortezomibinjektionen zwischen den Tagen 16 und 30 gab es keine signifikante Wirkung.

Schlussfolgerung

Zwei getrennte Wellen einer akuten strahleninduzierten Harnblasenfunktionsstörung haben unterschiedliche Mechanismen, die weitere biologische Studien erfordern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dörr W (2009) Pathogenesis of normal tissue side-effects. In: Joiner M, van der Kogel A (eds) Basic clinical radiobiology, 4th edn. Hodder Arnold, London, pp 169–190

    Chapter  Google Scholar 

  2. Marks LB, Carroll PR, Dugan TC et al (1995) The response of the urinary bladder, urethra, and ureter to radiation and chemotherapy. Int J Radiat Oncol Biol Phys 31:1257–1280

    Article  CAS  Google Scholar 

  3. Van der Kogel A (2009) Radiation response and tolerance of normal tissue. In: Steel G (ed) Basic clinical radiobiology, 4th edn. Arnold, London, pp 30–41

    Chapter  Google Scholar 

  4. Dörr W, Eckhardt M, Ehme A et al (1998) Pathogenesis of acute radiation effects in the urinary bladder. Experimental results. Strahlenther Onkol 174:93–95

    PubMed  Google Scholar 

  5. Dörr W, Bentzen SM (1999) Late functional response of mouse urinary bladder to fractionated X‑irradiation. Int J Radiat Biol 75:1307–1315

    Article  Google Scholar 

  6. Dörr W, Beck-Bornholdt HP (1999) Radiation-induced impairment of urinary bladder function in mice: Fine structure of acute responses and consequences on late effects. Radiat Res 151:461–467

    Article  Google Scholar 

  7. Jaal J, Bruchner K, Hoinkis C et al (2004) Radiation induced variations in urothelial expression of intercellular adhesion molecules 1 (ICAM-1): association with changes in urinary bladder function. Int J Radiat Biol 80:65–72

    Article  CAS  Google Scholar 

  8. Jaal J, Dörr W (2006) Radiation-induced damage to mouse urothelial barrier. Radiother Oncol 80:250–256

    Article  CAS  Google Scholar 

  9. Yarnold J, Vozenin Brotons MC (2010) Pathogenetic mechanism in radiation fibrosis. Radiother Oncol 97:149–161

    Article  CAS  Google Scholar 

  10. Jaal J, Dörr W (2010) Radiation effects on cellularity, proliferation and EGFR expression in mouse bladder Urothelium. Radiat Res 173:479–485

    Article  CAS  Google Scholar 

  11. Jaal J, Dörr W (2006) Radiation induced inflammatory changes in the mouse bladder: the role of the Cyclooxygenase-2. J Urol 175:1529–1533

    Article  CAS  Google Scholar 

  12. Jaal J, Dörr W (2005) Early and long term effects of radiation on intercellular adhesion molecule 1 (ICAM-1) expression in mouse urinary bladder endothelium. Int J Radiat Biol 81:387–395

    Article  CAS  Google Scholar 

  13. Jaal J, Dörr W (2006) Radiation induced damages to mouse urothelial barrier. Radiother Oncol 80:250–256

    Article  CAS  Google Scholar 

  14. Magne N, Toillon RA, Bottero V et al (2006) NF-κB modulation and ionizing radiation: mechanism and future direction for cancer treatment. Cancer Lett 231:158–168

    Article  CAS  Google Scholar 

  15. Luedde T, Schwabe RF (2011) NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 8:108–118

    Article  CAS  Google Scholar 

  16. Shostak K, Chariot A (2015) EGFR and NF-κB: partners in cancer. Trends Mol Med 21:385–393

    Article  CAS  Google Scholar 

  17. Lin YC, Shun CT, Wu MS et al (2006) A novel anticancer effect of thalidomide: inhibition of intercellular adhesion molecule-1-mediated cell invasion and metastasis through suppression pf nuclear factor-kappaB. Clin Cancer Res 23:7165–7173

    Article  Google Scholar 

  18. Liu ZG, Morgan MJ (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115

    Article  Google Scholar 

  19. Frings K, Gruber S, Kuess P et al (2016) Modulation of radiation-induced oral mucositis by thalidomide. Strahlenther Onkol 192:561–568

    Article  Google Scholar 

  20. Taskeen Mujtaba MS, Ping Dou Q (2011) Advances in the understanding of mechanism and therapeutic use of Bortezomib. Discov Med 12(67):471–480

    PubMed  PubMed Central  Google Scholar 

  21. Gu H, Chen X, Gao G et al (2008) Caspase-2 function upstream of mitochondrial in endoplasmic reticulum stress-induced apoptosis by Bortezomib in human myeloma cells. Mol Cancer Ther 7(8):2298–2307

    Article  CAS  Google Scholar 

  22. Landowski TH, Megil CJ, Nulmeyer KD et al (2005) Mitochondrial-mediated disregulation of Ca2+ in a critical determination of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 65(9):3828–3836

    Article  CAS  Google Scholar 

  23. Benfani CD, Vlachostergios PJ, Hatzidaki E et al (2011) Bortezomib represses HIF-1 alpha protein expression and nuclear accumulation by inhibiting both P13K/Akt/TOR and MAPK pathways in prostate cancer cells. J Mol Med 90(1):45–54

    Article  Google Scholar 

  24. Ishii Y, Prirkmaier A, Alvarez JV et al (2006) Cycline D1 overexpression and response to bortezomib treatment in a breast cancer model. J Natl Cancer Inst 98(17):1238–1247

    Article  CAS  Google Scholar 

  25. Stewart FA, Lundbeck F, Oussoren Y et al (1991) Acute and late radiation damage in mouse bladder: a comparison of urination frequency and cyctometry. Int J Radiat Oncol Biol Phys 21(5):1211–1219

    Article  CAS  Google Scholar 

  26. Lundbeck F, Oussoren Y, Stewart FA (1993) Early and late damage in the mouse bladder after radiation combined with cyclophosphamide or cisplatinum, evaluated by two different functional assays. Acta Oncol 32(6):679–687

    Article  CAS  Google Scholar 

  27. Mitchell S, Vargas J, Hofmann A (2016) Signaling via the NF-κB system. WIREs Syst Biol Med 8(3):227–241

    Article  CAS  Google Scholar 

  28. Winters JC, Dmochowski RR, Goldman HB et al (2012) Urodynamic study in adults: aUA/SUFU guidline. J Urol 188(6):2464–2472

    Article  Google Scholar 

  29. Browne C, Davic NF, Craith ME et al (2015) A narrative review on the pathophysiology and management for radiation cystitis. Adv Urol. https://doi.org/10.1155/2015/346812

    Article  PubMed  PubMed Central  Google Scholar 

  30. Singh V, Gupta D, Arora R (2015) NF-κB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries (Craiova). https://doi.org/10.15190/d.2015.27

    Article  Google Scholar 

  31. Barker HE, Paget JT, Khan AA, Harrington KJ (2015) The tumor Microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 15(7). https://doi.org/10.1038/ncr3957

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zahra Madjd MD PhD or Wolfgang Doerr DVM, PhD.

Ethics declarations

Conflict of interest

S. Sarsarshahi, Z. Madjd, E. Bozsaky, J. Kowaliuk, P. Kuess, M.H. Ghahremani, and W. Doerr declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarsarshahi, S., Madjd, Z., Bozsaky, E. et al. An evaluation of the effect of bortezomib on radiation-induced urinary bladder dysfunction. Strahlenther Onkol 195, 934–939 (2019). https://doi.org/10.1007/s00066-019-01497-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-019-01497-8

Keywords

Schlüsselwörter

Navigation