Skip to main content
Log in

Bortezomib represses HIF-1α protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 17 April 2013

Abstract

Bortezomib represents the first proteasome inhibitor (PI) with demonstrated antitumor activity in the clinical setting, particularly for treatment of hematological malignancies. At the preclinical level, its action is shown to be mediated by induction of growth arrest and apoptosis in many tumor types, including androgen-dependent (AD) and androgen-independent (AI) prostate cancer (PCa) cells. Hypoxia-inducible factor-1α (HIF-1α), which is directly involved in tumor growth, is one of the most studied and promising molecular targets for anti-cancer therapy and is often overexpressed in PCa. Bortezomib has been reported to impair tumor growth by also inhibiting HIF-1α. In this study, we investigated the effect of bortezomib on the expression, activity and localization of HIF-1α in LNCaP (AD) and PC3 (AI) PCa cells. First, we show that hypoxic upregulation of HIF-1α protein levels and activity involves both the PI3K/Akt/mTOR and p44/42 MAPK pathways. Second, bortezomib inhibits expression of HIF-1α protein under both normoxic and hypoxic conditions, represses HIF-1 transcriptional activity and attenuates the release of vascular endothelial growth factor. These effects correlate with the ability of bortezomib to cause dephosphorylation of phospho-Akt, phospho-p70S6K, and phospho-S6RP, thus inactivating a pathway known to be required for HIF-1α protein expression at the translational level. Furthermore, bortezomib also abrogates p44/42 MAPK phosphorylation, which results to reduced nuclear translocation of HIF-1α. Taken together, these results suggest that bortezomib inhibits HIF-1α protein synthesis and its nuclear targeting through suppression of PI3K/Akt/mTOR and MAPK pathways, respectively, in both AD and AI PCa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams J, Kauffman M (2004) Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest 22:304–411

    Article  PubMed  CAS  Google Scholar 

  2. Papandreou CN, Logothetis CJ (2004) Bortezomib as a potential treatment for prostate cancer. Cancer Res 64:5036–5043

    Article  PubMed  CAS  Google Scholar 

  3. Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H, Shiraishi N, Ribatti D, Nico B, Vacca A et al (2006) Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res 66:184–191

    Article  PubMed  CAS  Google Scholar 

  4. Veschini L, Belloni D, Foglieni C, Cangi MG, Ferrarini M, Caligaris-Cappio F, Ferrero E (2007) Hypoxia-inducible transcription factor-1 alpha determines sensitivity of endothelial cells to the proteosome inhibitor bortezomib. Blood 109:2565–2570

    Article  PubMed  CAS  Google Scholar 

  5. Semenza GL (2009) Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol 19:12–16

    Article  PubMed  CAS  Google Scholar 

  6. Jiang BH, Liu LZ (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102:19–65

    Article  PubMed  CAS  Google Scholar 

  7. Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, Vande Woude GF, Ahn NG (1994) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265:966–970

    Article  PubMed  CAS  Google Scholar 

  8. Sang N, Stiehl DP, Bohensky J, Leshchinsky I, Srinivas V, Caro J (2003) MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem 278:14013–14019

    Article  PubMed  CAS  Google Scholar 

  9. Richard DE, Berra E, Gothié E, Roux D, Pouysségur J (1999) p42/p44 MAP kinases phosphorylate hypoxia inducible factor 1 alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 274:32631–32638

    Article  PubMed  CAS  Google Scholar 

  10. Mylonis I, Chachami G, Samiotaki M, Panayotou G, Paraskeva E, Kalousi A, Georgatsou E, Bonanou S, Simos G (2006) Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J Biol Chem 281:33095–33106

    Article  PubMed  CAS  Google Scholar 

  11. Mylonis I, Chachami G, Paraskeva E, Simos G (2008) Atypical CRM1-dependent nuclear export signal mediates regulation of hypoxia-inducible factor-1alpha by MAPK. J Biol Chem 283:27620–27627

    Article  PubMed  CAS  Google Scholar 

  12. Triantafyllou A, Mylonis I, Simos G, Bonanou S, Tsakalof A (2008) Flavonoids induce HIF-1alpha but impair its nuclear accumulation and activity. Free Radic Biol Med 44:657–670

    Article  PubMed  CAS  Google Scholar 

  13. Shin DH, Chun YS, Lee DS, Huang LE, Park JW (2008) Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia inducible factor-1. Blood 111:3131–3136

    Article  PubMed  CAS  Google Scholar 

  14. Kaluz S, Kaluzova M, Stanbridge EJ (2006) Proteasomal inhibition attenuates transcriptional activity of hypoxia-inducible factor 1 (HIF-1) via specific effect on the HIF-1a C-terminal activation domain. Mol Cell Biol 26:5895–5907

    Article  PubMed  CAS  Google Scholar 

  15. Birle DC, Hedley DW (2007) Suppression of the hypoxia-inducible factor-1 response in cervical carcinoma xenografts by proteasome inhibitors. Cancer Res 67:1735–1743

    Article  PubMed  CAS  Google Scholar 

  16. Zhu K, Chan W, Heymach J, Wilkinson M, McConkey DJ (2009) Control of HIF-1alpha expression by eIF2 alpha phosphorylation-mediated translational repression. Cancer Res 69:1836–1843

    Article  PubMed  CAS  Google Scholar 

  17. Patrikidou A, Vlachostergios PJ, Voutsadakis IA, Hatzidaki E, Valeri RM, Destouni C, Apostolou E, Daliani D, Papandreou CN (2011) Inverse baseline expression pattern of the NEP/neuropeptides and NFκB/proteasome pathways in androgen-dependent and androgen-independent prostate cancer cells. Cancer Cell Int 11:13

    Article  PubMed  CAS  Google Scholar 

  18. Ikezoe T, Yang Y, Saito T, Koeffler HP, Taguchi H (2004) Proteasome inhibitor PS-341 down-regulates prostate-specific antigen (PSA) and induces growth arrest and apoptosis of androgen-dependent human prostate cancer LNCaP cells. Cancer Sci 95:271–275

    Article  PubMed  CAS  Google Scholar 

  19. Fahy BN, Schlieman MG, Mortenson MM, Virudachalam S, Bold RJ (2005) Targeting BCL-2 overexpression in various human malignancies through NF-kappaB inhibition by the proteasome inhibitor bortezomib. Cancer Chemother Pharmacol 56:46–54

    Article  PubMed  CAS  Google Scholar 

  20. Kimbro KS, Simons JW (2006) Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr Relat Cancer 13:739–749

    Article  PubMed  CAS  Google Scholar 

  21. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59:5830–5835

    PubMed  CAS  Google Scholar 

  22. Salnikow K, Costa M, Figg WD, Blagosklonny MV (2000) Hyperinducibility of hypoxia-responsive genes without p53/p21-dependent checkpoint in aggressive prostate cancer. Cancer Res 60:5630–5634

    PubMed  CAS  Google Scholar 

  23. Sheflin LG, Zou AP, Spaulding SW (2004) Androgens regulate the binding of endogenous HuR to the AU-rich 3'UTRs of HIF-1alpha and EGF mRNA. Biochem Biophys Res Commun 322:644–651

    Article  PubMed  CAS  Google Scholar 

  24. Mabjeesh NJ, Willard MT, Frederickson CE, Zhong H, Simons JW (2003) Androgens stimulate hypoxia-inducible factor 1 activation via autocrine loop of tyrosine kinase receptor/phosphatidylinositol 3'-kinase/protein kinase B in prostate cancer cells. Clin Cancer Res 9:2416–2425

    PubMed  CAS  Google Scholar 

  25. Mitani T, Yamaji R, Higashimura Y, Harada N, Nakano Y, Inui H (2011) Hypoxia enhances transcriptional activity of androgen receptor through hypoxia-inducible factor-1α in a low androgen environment. J Steroid Biochem Mol Biol 123:58–64

    Article  PubMed  CAS  Google Scholar 

  26. Papatsoris AG, Karamouzis MV, Papavassiliou AG (2007) The power and promise of "rewiring" the mitogen-activated protein kinase network in prostate cancer therapeutics. Mol Cancer Ther 6:811–819

    Article  PubMed  CAS  Google Scholar 

  27. Chen KF, Yeh PY, Yeh KH, Lu YS, Huang SY, Cheng AL (2008) Down-regulation of phospho-Akt is a major molecular determinant of bortezomib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res 68:6698–6707

    Article  PubMed  CAS  Google Scholar 

  28. Codony-Servat J, Tapia MA, Bosch M et al (2006) Differential cellular and molecular effects of bortezomib, a proteasome inhibitor, in human breast cancer cells. Mol Cancer Ther 5:665–675

    Article  PubMed  CAS  Google Scholar 

  29. Esparís-Ogando A, Alegre A, Aguado B, Mateo G, Gutiérrez N, Bladé J, Schenkein D, Pandiella A, San Miguel JF (2005) Bortezomib is an efficient agent in plasma cell leukemias. Int J Cancer 114:665–667

    Article  PubMed  Google Scholar 

  30. Hideshima T, Chauhan D, Hayashi T, Akiyama M, Mitsiades N, Mitsiades C, Podar K, Munshi NC, Richardson PG, Anderson KC (2003) Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma. Oncogene 22:8386–8393

    Article  PubMed  CAS  Google Scholar 

  31. Mylonis I, Lakka A, Tsakalof A, Simos G (2010) The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions. Biochem Biophys Res Commun 398:74–78

    Article  PubMed  CAS  Google Scholar 

  32. Hur E, Chang KY, Lee E, Lee SK, Park H (2001) Mitogen-activated protein kinase kinase inhibitor PD98059 blocks the trans-activation but not the stabilization or DNA binding ability of hypoxia-inducible factor-1alpha. Mol Pharmacol 59:1216–1224

    PubMed  CAS  Google Scholar 

  33. Zhong H, Semenza GL, Simons JW, De Marzo AM (2004) Up-regulation of hypoxia-inducible factor 1a is an early event in prostate carcinogenesis. Cancer Detection and Prevention 28:88–93

    Article  PubMed  CAS  Google Scholar 

  34. Boddy JL, Fox SB, Han C, Campo L, Turley H, Kanga S, Malone PR, Harris AL (2005) The androgen receptor is significantly associated with vascular endothelial growth factor and hypoxia sensing via hypoxia-inducible factors HIF-1a, HIF-2a, and the prolyl hydroxylases in human prostate cancer. Clin Cancer Res 11:7658–7663

    Article  PubMed  CAS  Google Scholar 

  35. Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, Sun Y, Ouyang X, Gerald WL, Cordon-Cardo C, Abate-Shen C (2008) Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 118:3051–3064

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would wish to thank Dr. A. J. Giaccia (Stanford University) and Dr. M. U. Muckenthaler (University of Heidelberg, Germany) for providing us with the firefly luciferase reporter plasmid pGL3–5HRE-VEGF and the Renilla luciferase expressing plasmid PCIRenilla, respectively. We also thank Professor A. Molyvdas and Dr E. Paraskeva (Department of Physiology, University of Thessaly School of Medicine, Biopolis, Larissa, Greece) for use of research equipments in their laboratories.

Disclosure statement

The authors report no potential conflict of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christos N. Papandreou or Panagiotis Liakos.

Additional information

C. N. Papandreou and P. Liakos have equal contributions.

An erratum to this article is available at http://dx.doi.org/10.1007/s00109-013-1030-4.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 335 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Befani, C.D., Vlachostergios, P.J., Hatzidaki, E. et al. Bortezomib represses HIF-1α protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells. J Mol Med 90, 45–54 (2012). https://doi.org/10.1007/s00109-011-0805-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0805-8

Keywords

Navigation