Skip to main content

Advertisement

Log in

Dosimetric and volumetric effects in clinical target volume and organs at risk during postprostatectomy radiotherapy

Dosimetrische und volumetrische Effekte auf klinisches Zielvolumen und Risikoorgane während der Strahlentherapie nach Prostatektomie

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

To assess the reproducibility of the dose–volume distribution of the initial simulation CT, generated using volumetric modulated arc therapy (VMAT) planning, during the radiotherapy of the prostatic bed based on weekly cone beam CTs (CBCT).

Methods

Twenty-three patients, after radical prostatectomy were treated with adjuvant or salvage radiotherapy between July and December 2016 and considered for this evaluation. Weekly CBCT scans (n = 138) were imported into the treatment planning system, and the clinical tumor volume (CTV), the rectum and the bladder were contoured. The initially calculated dose distribution and the dose–volume histograms generated from weekly CBCTs were compared. The prostatic fossa dose coverage was assessed by the proportion of the CTV fully encompassed by the 95% and 98% isodose lines. Rectal and bladder volumes receiving 50, 60 and 65 Gy during the treatment were compared to the initial plan, with statistical significance determined using the one-sample t‑test.

Results

Marked variations in the total organ volume of the rectum and the bladder were observed. The correlation between rectum volume and V50 was not significant (p = 0.487), while the bladder volume and V50 demonstrated a significant correlation. There was no correlation between urinary bladder volume and CTV. The change in rectal volume correlated significantly with CTV. The dose coverage (D98% and D95%) to the prostatic bed could be achieved for all patients due to the ventral shift in the volume differences of the rectum.

Conclusion

Weekly CBCTs can be considered as adequate verification tools to assess the interfractional variability of the CTV and organs at risk. The proven volume changes in the urinary bladder and the rectum do not compromise the final delivered dose in the CTV.

Zusammenfassung

Zielsetzung

Die Bewertung der Reproduzierbarkeit der Dosis-Volumen-Belastung nach computertomographisch gestützter volumetrischer Bogenbestrahlung(VMAT)-Planung im Therapieverlauf basierend auf wöchentlichen „cone beam CTs“ (CBCT).

Methoden

Es wurden 23 Patienten einbezogen, bei denen nach radikaler Prostatektomie zwischen Juli 2016 und Dezember 2016 eine adjuvante oder Salvage-Radiotherapie zum Einsatz kam. Wöchentlich angefertigte CBCTs (n = 138) wurden in das Planungssystem importiert und das CTV („clinical target volume“), das Rektum und die Harnblase konturiert. Auf Basis der initial berechneten Dosisverteilung wurden die zeitabschnittsbezogenen Dosis-Volumen-Belastungen verglichen. Die Bewertung der Dosisverordnung in der Prostataloge erfolgte anhand der 98%- bzw. 95%-Dosis-Volumenabdeckung. Für die Bewertung der Rektum- und Harnblasenbelastung dienten V50, V60 und V65. Signifikante Differenzen wurden mit dem Einstichproben-t-Test ermittelt.

Ergebnisse

Es gab deutliche Variationen der Organvolumina von Rektum und Harnblase. Die Korrelation zwischen den Rektumvolumina und der entsprechenden V50 waren nicht signifikant (p = 0,49), jedoch zeigte das Harnblasenvolumen zur entsprechenden V50 eine signifikante Korrelation. Es gab keine Korrelation von Harnblasenvolumen zu CTV. Die Veränderung des Rektumvolumens korrelierte signifikant mit dem CTV. Durch die Ventralausrichtung der Volumendifferenz des Rektums konnte die Dosisverschreibung (D98% und D95%) an der Prostataloge bei allen Patienten realisiert werden.

Schlussfolgerung

Wöchentliche CBCTs sind ein adäquates Verifikationstool zur Bewertung der interfraktionellen Organvariabilität von CTV und Risikoorganen. Die nachgewiesenen Volumenveränderungen an Harnblase und Rektum kompromittieren die Dosisverordnung im CTV nicht. Die nachgewiesenen Volumenveränderungen an Harnblase und Rektum kompromittieren nicht die Dosisverordnung im CTV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CBCT:

Cone-beam computed tomography

CTV:

Clinical target volume

IMRT:

Intensity modulated radiotherapy

PTV:

Planned target volume

OAR:

Organs at risk

RT:

Radiotherapy

VMAT:

Volumetric modulated arc therapy

ICRU:

International Commission on Radiation Units and Measurements

DVH:

Dose–volume histogram

DWH:

Dose–wall histogram

DSH:

Dose–surface histogram

QUANTEC:

Quantitative Analysis of Normal Tissue Effects in the Clinic

EORTC:

European Organisation for Research and Treatment of Cancer

RTOG:

Radiation Therapy Oncology Group

References

  1. Thompson IM, Tangen CM, Paradelo J, Lucia MS, Miller G, Troyer D, Messing E, Forman J, Chin J, Swanson G, Canby-Hagino E, Crawford ED (2009) Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: Long-term follow up of a randomized clinical trial. J Urol 181(3):956–962

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wiegel T, Bartkowiak D, Bottke D et al (2014) Adjuvant radiotherapy versus wait-and-see after radical prostatectomy: 10-year follow-up of the ARO 96-02/AUO AP 09/95 trial. Eur Urol 66:243–250

    Article  PubMed  Google Scholar 

  3. Bolla M, van Poppel H, Collette L, van Cangh P, Vekemans K, Da Pozzo L, de Reijke TM, Verbaeys A, Bosset JF, van Velthoven R, Maréchal JM, Scalliet P, Haustermans K, Piérart M (2005) European Organization for Research and Treatment of Cancer. Postoperative radiotherapy after radical prostatectomy: A randomised controlled trial (EORTC trial 22911). Lancet 366(9485):572–578

    Article  PubMed  Google Scholar 

  4. Choo R, Hruby G, Hong J, Hong E, DeBoer G, Danjoux C et al (2002) Positive resection margin and/or pathologic T3 adenocarcinoma of prostate with undetectable postoperative prostate-specific antigen after radical prostatectomy: To irradiate or not? Int J Radiat Oncol Biol Phys 52(3):674–680

    Article  PubMed  Google Scholar 

  5. Cozzarini C, Bolognesi A, Ceresoli GL, Fiorino C, Rossa A, Bertini R et al (2004) Role of postoperative radiotherapy after pelvic lymphadenectomy and radical retropubic prostatectomy: A single institute experience of 415 patients. Int J Radiat Oncol Biol Phys 59(3):674–683

    Article  PubMed  Google Scholar 

  6. Cozzarini C, Fiorino C, Mandelli D, Campagnoli E, Fallini M, Reni M et al (2000) 3D conformal radiotherapy significantly reduces toxicity of post-prostatectomy adjuvant of salvage irradiation. Int J Radiat Oncol Biol Phys 48(3):248

    Article  Google Scholar 

  7. Pearlstein KA, Chen RC (2013) Comparing dosimetric, morbidity, quality of life, and cancer control outcomes after 3D conformal, intensitymodulated, and proton radiation therapy for prostate cancer. Semin Radiat Oncol 23:182–190

    Article  PubMed  Google Scholar 

  8. Alongi F, Fogliata A, Navarria P, Tozzi A, Mancosu P, Lobefalo F, Reggiori G, Clivio A, Cozzi L, Scorsetti M (2012) Moderate hypofractionation and simultaneous integrated boost with volumetric modulated arc therapy (RapidArc) for prostate cancer. Report of feasibility and acute toxicity. Strahlenther Onkol 188:990–996

    Article  CAS  PubMed  Google Scholar 

  9. Cozzarini C, Fiorino C, Di Muzio N, Alongi F, Broggi S, Cattaneo M, Montorsi F, Rigatti P, Calandrino R, Fazio F (2007) Significant reduction of acute toxicity following pelvic irradiation with helical tomotherapy in patients with localized prostate cancer. Radiother Oncol 84:164–170

    Article  PubMed  Google Scholar 

  10. Otto K (2008) Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35(1):310–317

    Article  PubMed  Google Scholar 

  11. Huang K, Palma DA, Scott D et al (2012) Inter- and intrafraction uncertainty in prostate bed image-guided radiotherapy. Int J Radiat Oncol Biol Phys 84:402–407

    Article  PubMed  Google Scholar 

  12. Klayton T, Price R, Buyyounouski MK, Sobczak M, Greenberg R, Li J, Keller L, Sopka D, Kutikov A, Horwitz EM (2012) Prostate bed motion during intensity-modulated radiotherapy treatment. Int J Radiat Oncol Biol Phys 84:130–136

    Article  PubMed  PubMed Central  Google Scholar 

  13. Verma V, Chen S, Zhou S et al (2016) Prostate bed target interfractional motion using RTOG consensus definitions and daily CT on rails. Strahlenther Onkol 193(1):38–45

    Article  PubMed  Google Scholar 

  14. Alongi F, Di Muzio N (2009) Image-guided radiation therapy: A new era for the radiation oncologist? Int J Clin Oncol 14:568–569

    Article  PubMed  Google Scholar 

  15. Schulze D, Liang J, Yan D, Zhang T (2009) Comparison of various online IGRT strategies: The benefits of online treatment plan re-optimization. Radiother Oncol 90(3):367–376

    Article  PubMed  Google Scholar 

  16. Rudat V, Nour A, Hammoud M, Alaradi A, Mohammed A (2016) Image-guided intensity-modulated radiotherapy of prostate cancer: Analysis of interfractional errors and acute toxicity. Strahlenther Onkol 192:109–117

    Article  PubMed  Google Scholar 

  17. Wang W, Wu Q, Yan D (2010) Quantitative evaluation of cone-beam computed tomography in target volume definition for offline image-guided radiation therapy of prostate cancer. Radiother Oncol 94(1):71–75

    Article  PubMed  Google Scholar 

  18. Lei Y, Wu Q (2010) A hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy. Phys Med Biol 55(8):2221

    Article  PubMed  PubMed Central  Google Scholar 

  19. Onozato Y, Kadoya N, Fujita Y, Arai K, Dobashi S, Takeda K et al (2013) Evaluation of on-board kV cone beam CT-based dose calculation using deformable image registration and modification of HU values. Int J Radiat Oncol Biol Phys 87(2):711–712

    Article  Google Scholar 

  20. Marchant TE, Moore CJ, Rowbottom CG, Mackay RI, Williams PC (2008) Shading correction algorithm for improvement of cone-beam CT images in radiotherapy. Phys Med Biol 53(20):5719

    Article  CAS  PubMed  Google Scholar 

  21. Kupelian PA, Langen KM, Zeidan OA, Meeks SL, Willoughby TR, Wagner TH et al (2006) Daily variations in delivered doses in patients treated with radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 66(3):876–882

    Article  PubMed  Google Scholar 

  22. Langen KM, Lu W, Willoughby TR, Chauhan B, Meeks SL, Kupelian PA et al (2009) Dosimetric effect of prostate motion during helical tomotherapy. Int J Radiat Oncol Biol Phys 74(4):1134–1142

    Article  PubMed  Google Scholar 

  23. Pawlowski JM, Yang ES, Malcolm AW, Coffey CW, Ding GX (2010) Reduction of dose delivered to organs at risk in prostate cancer patients via image-guided radiation therapy. Int J Radiat Oncol Biol Phys 76(3):924–934

    Article  PubMed  Google Scholar 

  24. Sripadam R, Stratford J, Henry AM, Jackson A, Moore CJ, Price P (2009) Rectal motion can reduce CTV coverage and increase rectal dose during prostate radiotherapy: A daily cone-beam CT study. Radiother Oncol 90(3):312–317

    Article  PubMed  Google Scholar 

  25. Guckenberger M, Meyer J, Baier K, Vordermark D, Flentje M (2006) Distinct effects of rectum delineation methods in 3D-confromal vs. IMRT treatment planning of prostate cancer. Radiat Oncol 1(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hatton JA, Greer PB, Tang C, Wright P, Capp A, Gupta S et al (2011) Does the planning dose-volume histogram represent treatment doses in image-guided prostate radiation therapy? Assessment with cone-beam computerised tomography scans. Radiother Oncol 98(2):162–168

    Article  PubMed  Google Scholar 

  27. Maggio A, Gabriele D, Garibaldi E et al (2017) Impact of a rectal and bladder preparation protocol on prostate cancer outcome in patients treated with external beam radiotherapy. Strahlenther Onkol 193:722–732

    Article  CAS  PubMed  Google Scholar 

  28. Poortmans P, Bossi A, Vandeputte K, Bosset M, Miralbell R, Maingon P et al (2007) Guidelines for target volume definition in post-operative radiotherapy for prostate cancer, on behalf of the EORTC Radiation Oncology Group. Radiother Oncol 84:121–127

    Article  PubMed  Google Scholar 

  29. Gay HA, Barthold HJ, O’Meara E et al (2012) Pelvic normal tissue contouring guidelines for radiation therapy: A radiation therapy oncology group consensus panel Atlas. Int J Radiat Oncol Biol Phys 83(3):e353–e362. https://doi.org/10.1016/j.ijrobp.2012.01.02

    Article  PubMed  PubMed Central  Google Scholar 

  30. Marks LB, Yorke ED, Jackson A et al (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76:10–19

    Article  Google Scholar 

  31. Ghilezan M, Yan D, Liang J, Jaffray D, Wong J, Martinez A (2004) Online image-guided intensity-modulated radiotherapy for prostate cancer: How much improvement can we expect? A theoretical assessment of clinical benefits and potential dose escalation by improving precision and accuracy of radiation delivery. Int J Radiat Oncol Biol Phys 60:1602–1610

    Article  PubMed  Google Scholar 

  32. Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO (2010) Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys 76:123–129

    Article  Google Scholar 

  33. Diot Q, Olsen C, Kavanagh B, Raben D, Miften M (2011) Dosimetric effect of online image-guided anatomical interventions for postprostatectomy cancer patients. Int J Radiat Oncol Biol Phys 79(2):623–632

    Article  PubMed  Google Scholar 

  34. Fiorino C, Foppiano F, Franzone P, Broggi S, Castellone P, Marcenaro M, Calandrino R, Sanguineti G (2005) Rectal and bladder motion during conformal radiotherapy after radical prostatectomy. Radiother Oncol 74:187–195

    Article  PubMed  Google Scholar 

  35. Padhani AR, Khoo VS, Suckling J, Husband JE, Leach MO, Dearnaley DP (1999) Evaluating the effect of rectal distension and rectal movement on prostate gland position using cine MRI. Int J Radiat Oncol Biol Phys 44:525–533

    Article  CAS  PubMed  Google Scholar 

  36. Murthy V, Shukla P, Adurkar P, Master Z, Mahantshetty U, Shrivastava SK (2011) Dose variation during hypofractionated image-guided radiotherapy for prostate cancer: Planned versus delivered. J Cancer Res Ther 7:162–167

    Article  PubMed  Google Scholar 

  37. Ghadjar P, Zelefsky MJ, Spratt DE et al (2014) Impact of dose to the bladder trigone on long-term urinary function after high-dose intensity modulated radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 88(2):339–344

    Article  PubMed  PubMed Central  Google Scholar 

  38. Frank SJ, Dong L, Kudchadker RJ et al (2008) Quantification of prostate and seminal vesicle interfraction variation during IMRT. Int J Radiat Oncol Biol Phys 71(3):813

    Article  PubMed  Google Scholar 

  39. Orlandini LC, Coppola M, Fulcheri C et al (2017) Dose tracking assessment for image-guided radiotherapy of the prostate bed and the impact on clinical workflow. Radiat Oncol 12:78

    Article  PubMed  PubMed Central  Google Scholar 

  40. de Crevoisier R et al (2018) Daily versus weekly prostate cancer image-guided radiotherapy: Phase 3 multicenter randomized trial. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2018.07.2006

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff who took care of our patients’ needs, and who were involved in gathering, documenting, verifying, forwarding, and processing the clinical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Gawish.

Ethics declarations

Conflict of interest

A. Gawish, A.A. Chughtai and M.J. Eble declare that they have no competing interests.

Additional information

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions

All authors participated in patient treatment and were involved in the preparation of the manuscript. All authors reviewed and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawish, A., Chughtai, A.A. & Eble, M.J. Dosimetric and volumetric effects in clinical target volume and organs at risk during postprostatectomy radiotherapy. Strahlenther Onkol 195, 383–392 (2019). https://doi.org/10.1007/s00066-018-1381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-018-1381-4

Keywords

Schlüsselwörter

Navigation