Skip to main content
Log in

Moderate hypofractionation and simultaneous integrated boost with volumetric modulated arc therapy (RapidArc) for prostate cancer

Report of feasibility and acute toxicity

Moderate Hypofraktionierung und simultan integrierter Boost mit volumetrisch modulierter Bogentherapie (RapidArc) bei Prostatakrebs

Ein Bericht über Machbarkeit und akute Toxizität

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

In the present study, the acute toxicity profiles for prostate patients treated with simultaneous integrated boost (SIB) with volumetric modulated arcs in a hypofractionated regime are reported.

Patients and methods

A total of 70 patients treated with RapidArc between May 2010 and September 2011 were retrospectively evaluated. Patients were stratified into low (36%), intermediate (49%), and high-risk (16%) groups. Target volumes (expanded to define the planning volumes (PTV)) were clinical target volume (CTV) 1: prostate; CTV2: CTV1 + seminal vesicles; CTV3: CTV2 + pelvic nodes. Low-risk patients received 71.4 Gy to PTV1; intermediate-risk 74.2 Gy to PTV1 and 61.6 or 65.5 Gy to PTV2; high-risk 74.2 Gy to PTV1, 61.6 or 65.5 Gy to PTV2, and 51.8 Gy to PTV3. All treatments were in 28 fractions. The median follow-up was 11 months (range 3.5–23 months). The acute rectal, gastrointestinal (GI) and genitourinary (GU) toxicities were scored according to EORTC/RTOG scales.

Results

Acute toxicities were recorded for the GU [G0 = 31/70 (44%), G1 = 22/70 (31%); G2 = 16/70 (23%); G3 = 1/70 (1%)], the rectum [G0 = 46/70 (66%); G1 = 12/70 (17%); G2 = 12/70 (17%); no G3], and the GI [G0 = 54/69 (77%); G1 = 11/69 (16%); G2 = 4/69 (6%); no G3]. Median time to rectal, GU, and GI toxicities were 27, 30, and 33 days, respectively. Only the GI toxicity correlated with stage and pelvic irradiation. Univariate analysis presented significant correlations between GI toxicity and intestinal irradiation (V50 Gy and V60 Gy). In the multivariate analysis, the only significant dosimetric variable was V50 Gy for the intestinal cavity.

Conclusion

Moderate hypofractionation with SIB and RapidArc was shown to be safe, with acceptable acute toxicity. Longer follow-up is needed to assess late toxicity and clinical outcome.

Zusammenfassung

Zielsetzungen

In der vorliegenden Studie wird über die akuten Toxizitätsprofile von Patienten mit Prostatakarzinom, die mit volumetrisch modulierter Bogentherapie und simultan integriertem Boost (SIB) in einem hypofraktionierten Regime behandelt wurden, berichtet.

Patienten und Methoden

Insgesamt 70 Patienten, die von Mai 2010 bis September 2011 mithilfe der RapidArc-Technik behandelt wurden, wurden retrospektiv analysiert. Es erfolgte eine Unterteilung in eine Niedrig- (36%), eine Mittel- (49%) und eine Hochrisikogruppe (16%). Die Zielvolumina, die jeweils entsprechend in den Planungszielvolumina (PTV) angepasst wurden, definieren sich folgendermaßen: klinisches Zielvolumen (CTV) 1: Prostata; CTV2: CTV1 + Samenbläschen; CTV3: CTV2 + Beckenlymphknoten. Bei Patienten der Niedrigrisikogruppe wurde eine Dosis von 71,4 Gy im PTV1, bei denen der Mittelrisikogruppe 74,2 Gy im PTV1 und 61,6 oder 65,5 Gy im PTV2 und in der Hochrisikogruppe 74,2 Gy im PTV1, 61,6 oder 65,5 Gy im PTV2 und 51,8 Gy im PTV3 appliziert. Bei allen Patienten wurde die Dosis in 28 Fraktionen verabreicht. Die mittlere Nachbeobachtungszeit betrug 330 Tage. Die akuten rektalen, gastrointestinalen und urogenitalen Toxizitäten wurden gemäß der Klassifikation der European Organisation for Research and Treatment of Cancer (EORTC) und der Radiation Therapy Oncology Group (RTOG) bewertet.

Ergebnisse

Folgende akute Toxizitäten wurden beobachtet: urogenital [G0 = 31/70 (44%); G1 = 22/70 (31%); G2 = 16/70 (23%); G3 = 1/70 (1%)], rektal [G0 = 46/70 (66%); G1 = 12/70 (17%); G2 = 12/70 (17%); G3 = 0], gastrointestinal [G0 = 54/69 (77%); G1 = 11/69 (16%); G2 = 4/69 (6%); G3 = 0]. Der mittlere Zeitraum bis zum Auftreten der akuten Toxizitäten betrug rektal 27 Tage, urogenital 30 Tage und gastrointestinal 33 Tage. Nur die gastrointestinale Toxizität korrelierte mit dem Staging und der Beckenbestrahlung. In der univariaten Analyse wurde eine signifikante Korrelation zwischen der gastrointestinalen Toxizität und der intestinalen Bestrahlung (V50 Gy und V60 Gy) beobachtet. Die alleinige signifikante dosimetrische Variable in der multivariaten Analyse war die Applikation V50 Gy für die Abdominalhöhle.

Schlussfolgerung

Die moderate Hypofraktionierung und SIB mithilfe der RapidArc-Technik ist eine sichere Behandlungsform mit akzeptablen akuten Toxizitäten. Eine längere Nachbeobachtungszeit ist notwendig, um Spättoxizitäten und das Behandlungsergebnis beurteilen zu können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Siegel R, Naishadham D, Jemal A (2012) A Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  2. Arcangeli S, Scorsetti M, Alongi F (2012) Will SBRT replace conventional radiotherapy in patients with low-intermediate risk prostate cancer? A review. Crit Rev Oncol Hematol (In press)

  3. Brenner DJ, Martinez AA, Edmundson GK et al (2002) Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys 52:6–13

    Article  PubMed  Google Scholar 

  4. Fowler JF (2005) The radiobiology of prostate cancer including new aspects of fractionated radiotherapy. Acta Oncol 44:e265–e276

    Article  Google Scholar 

  5. Ritter M, Forman J, Kupelian P et al (2009) Hypofractionation for prostate cancer. Cancer J 15:1–6

    Article  PubMed  Google Scholar 

  6. Di Muzio N, Fiorino C, Cozzarini C et al (2009) Phase I–II study of hypofractionated simultaneous integrated boost with tomotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 74:392–398

    Article  Google Scholar 

  7. Alongi F, Di Muzio N (2009) Image-guided radiation therapy: a new era for the radiation oncologist? Int J Clin Oncol 14:568–569

    Article  PubMed  Google Scholar 

  8. Geier M, Astner ST, Duma MN et al (2012) Dose-escalated simultaneous integrated-boost treatment of prostate patients via helical tomotherapy. Strahlenther Onkol 188:410–416

    Article  PubMed  CAS  Google Scholar 

  9. Otto K (2008) Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35:310–317

    Article  PubMed  Google Scholar 

  10. Palma D, Vollans E, James K et al (2008) Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 72:996–1001

    Article  PubMed  Google Scholar 

  11. Alongi F, Bignardi M, Garassino I et al (2012) Prospective phase II trial of cetuximab plus VMAT-SIB in locally advanced head and neck squamous cell carcinoma. Feasibility and tolerability in elderly and chemotherapy-ineligible patients. Strahlenther Onkol 188:49–55

    Article  PubMed  CAS  Google Scholar 

  12. Pesce GA, Clivio A, Cozzi L et al (2010) Early clinical experience of radiotherapy of prostate cancer with volumetric modulated arc therapy. Radiat Oncol 5:54

    Article  PubMed  Google Scholar 

  13. Langen KM, Willoughby TR, Meeks SL et al (2008) Observation on real-time prostate gland motion using electromagnetic tracking. Int J Radiat OncolBiol Phys 71:1084–1090

    Article  Google Scholar 

  14. Miralbell R, Roberts SA, Zubizarreta E, Hendry JH (2012) Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: α/β = 1.4 (0.9–2.2) Gy. Int J Radiat Oncol Biol Phys 82:e17–e24

    Article  PubMed  Google Scholar 

  15. Hanks GE, Schultheiss TE, Hanlon AL et al (1997) Optimization of conformal radiation treatment of prostate cancer: report of a dose escalation study. Int J Radiat Oncol Biol Phys 37:543–550

    Article  PubMed  CAS  Google Scholar 

  16. Brenner DJ (2003) Hypofractionation for prostate cancer radiotherapy: what are the issues? Int J Radiat Oncol Biol Phys 57:912–914

    Article  PubMed  Google Scholar 

  17. Livsey JE, Cowan RA, Wylie JP et al (2003) Hypofractionated conformal radiotherapy in carcinoma of the prostate: five-year outcome analysis. Int J Radiat Oncol Biol Phys 57:1254–1259

    Article  PubMed  Google Scholar 

  18. Lukka H, Hayter C, Julian JA et al (2005) Randomized trial comparing two fractionation schedules for patients with localized prostate cancer. J Clin Oncol 23:6132–6138

    Article  PubMed  Google Scholar 

  19. Yeoh EE, Fraser RJ, McGowan RE et al (2003) Evidence of efficacy without increased toxicity for hypofractionated radiotherapy for prostate carcinoma: early results of a phase III randomized trial. Int J Radiat Oncol Biol Phys 55:943–955

    Article  PubMed  Google Scholar 

  20. Ritter MA, Chappell RJ, Tome WA, Kupelian PA (2005) A multi institutional phase I/II trial Of Dose-per-fraction escalation for localized prostate cancer. Int J Radiat Oncol Biol Phys 63:s124

    Article  Google Scholar 

  21. Arcangeli G, Saracino B, Gomellini S et al (2010) A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int J Radiat Oncol Biol Phys 78:11–18

    Article  PubMed  Google Scholar 

  22. Kupelian PA, Willoughby TR, Reddy CA et al (2007) Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: Cleveland Clinic experience. Int J Radiat Oncol Biol Phys 68:1424–1430

    Article  PubMed  Google Scholar 

  23. Martin JM, Rosewall T, Bayley A et al (2007) Phase II trial of hypofractionated image-guided intensity modulated radiotherapy for localized prostate adenocarcinoma. Int J Radiat Oncol Biol Phys 69:1084–1089

    Article  PubMed  Google Scholar 

  24. Pollack A, Hanlon AL, Horwitz EM et al (2006) Dosimetry and preliminary acute toxicity in the first 100 men treated for prostate cancer on a randomized hypofractionation dose escalation trial. Int J Radiat Oncol Biol Phys 64: 518–526

    Article  PubMed  Google Scholar 

  25. Soete G, Arcangeli S, De Meerleer GO et al (2006) Phase II study of a four-week hypofractionated external beam radiotherapy regimen for prostate cancer: report on acute toxicity. Radiother Oncol 80:78–81

    Article  PubMed  Google Scholar 

  26. Norkus D, Miller A, Kurtinaitis K et al (2009) A randomized trial comparing hypofractionated and conventionally fractionated three-dimensional external-beam radiotherapy for localized prostate adenocarcinoma: a report on acute toxicity. Strahlenther Onkol 185:715–721

    Article  PubMed  Google Scholar 

  27. De Meerleer G, Vakaet L, Meersschout S et al (2004) Intensity modulated radiotherapy as primary treatment for prostate cancer: acute toxicity in 114 patients. Int J Radiat Oncol Biol Phys 60:777–787

    Article  Google Scholar 

  28. Zelefsky MJ, Fuks Z, Hunt M et al (2002) High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 53:1111–1116

    Article  PubMed  Google Scholar 

  29. Lebesque J, Koper P, Slot A et al (2003) Acute and late GI and GU toxicity after prostate irradiation to doses of 68 Gy and 78 Gy: results of a randomized trial. Int J Radiat Oncol Biol Phys 57:S152

    Article  Google Scholar 

  30. Beckendorf V, Guerif S, Le Prise E et al (2004) The GETUG 70 Gy vs. 80 Gy randomized trial for localized prostate cancer: feasibility and acute toxicity. Int J Radiat Oncol Biol Phys 60:1056–1065

    Article  PubMed  Google Scholar 

  31. Karlsdottir A, Johannessen DC, Muren LP et al (2004) Acute morbidity related to treatment volume during 3D-conformal radiation therapy for prostate cancer. Radiother Oncol 71:43–53

    Article  PubMed  Google Scholar 

  32. Michalski JM, Winter K, Purdy JA et al (2004) Toxicity after three dimensional radiotherapy for prostate cancer with RTOG 9406 dose level IV. Int J Radiat Oncol Biol Phys 58:735–742

    Article  PubMed  Google Scholar 

  33. Peeters ST, Heemsbergen WD, Putten WL van et al (2005) Acute and late complications after radiotherapy for prostate cancer: results of a multicenter randomized trial comparing 68 Gy to78 Gy. Int J Radiat Oncol Biol Phys 61:1019–1034

    Article  PubMed  Google Scholar 

  34. Fiorino C, Alongi F, Perna L et al (2009) Dose-volume relationships for acute bowel toxicity in patients treated with pelvic nodal irradiation for prostate cancer. Int J Radiat Oncol Biol Phys 75:29–35

    Article  PubMed  Google Scholar 

  35. Sanguineti G, Endres EJ, Sormani MP, Parker BC (2009) Dosimetric predictors of diarrhea during radiotherapy for prostate cancer. Strahlenther Onkol 185:390–396

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Alongi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alongi, F., Fogliata, A., Navarria, P. et al. Moderate hypofractionation and simultaneous integrated boost with volumetric modulated arc therapy (RapidArc) for prostate cancer. Strahlenther Onkol 188, 990–996 (2012). https://doi.org/10.1007/s00066-012-0171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0171-7

Keywords

Schlüsselwörter

Navigation