Skip to main content
Log in

Penile bulb sparing in prostate cancer radiotherapy

Dose analysis of an in-house MRI system to improve contouring

Schonen der Peniswurzel während der Strahlentherapie bei Prostatakrebs

Dosisanalyse eines im Hause befindlichen MRT-Systems zur Verbesserung der Konturierung

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Objective

This study aimed to assess the reduction in dose to the penile bulb (PB) achieved by MRI-based contouring following drinking and endorectal balloon (ERB) instructions.

Patients and methods

A total of 17 prostate cancer patients were treated with intensity-modulated radiation therapy (IMRT) and interstitial brachytherapy (IBT). CT and MRI datasets were acquired back-to-back based on a 65 cm3 air-filled ERB and drinking instructions. After rigid co-registration of the imaging data, the CT-based planning target volume (PTV) used for treatment planning was retrospectively compared to an MRI-based adaptive PTV and the dose to the PB was determined in each case. The adapted PTV encompassed a caudally cropped CT-based PTV which was defined on the basis of the MRI-based prostate contour plus an additional 5 mm safety margin.

Results

In the seven-field IMRT treatment plans, the MRI-based adapted PTV achieved mean (Dmean) and maximum (Dmax) doses to the PB which were significantly lower (by 7.6 Gy and 10.9 Gy, respectively; p <0.05) than those of the CT-contoured PTV. For 6 patients, the estimated PB Dmax (seven-field IMRT and IBT) for the adapted PTV was <70 Gy, whereas only 1 patient fulfilled this criterium with the CT-based PTV.

Conclusion

MRI-based contouring and seven-field IMRT-based treatment planning achieved dose sparing to the PB. Whereas the comparison of MRI and CT contouring only relates to external beam radiotherapy (EBRT) sparing, considering EBRT and IBT shows the improvement in PB sparing for the total treatment.

Zusammenfassung

Ziel

Ziel war es, eine Dosisreduktion an der Peniswurzel auf Grundlage einer Magnetresonanztomographie-(MRT-)unterstützten Konturierung unter Einhaltung eines Trink- und Rektalballonprotokolls (ERB) zu erreichen.

Patienten und Methoden

Insgesamt wurden 17 Patienten mit Prostatakrebs intensitätsmoduliert bestrahlt (IMRT) und erhielten anschließend eine interstitielle Brachytherapie (IBT). Computertomographie- (CT) und MRT-Datensätze wurden kurz nacheinander auf Basis eines 65-cm3-ERB- und Trinkprotokolls akquiriert und danach rigide registriert. In beiden Datensätzen wurde jeweils die Peniswurzeldosis bestimmt. Ein CT-basiertes Planungszielvolumen (PTV) wurde für die Bestrahlungsplanung verwendet und retrospektiv mit einem MRT-basierten adaptiven PTV verglichen. Das adaptive PTV umfasst ein kaudal gekürztes CT-basiertes PTV, welches auf Grundlage einer MRT-basierten Prostatakontur und einem zusätzlichen 5‑mm-Sicherheitsraum definiert wurde.

Ergebnisse

Das MRT-basierte adaptive PTV erzielte bei der 7‑Felder-IMRT-Planung 7,6 Gy (Dmean) und 10,9 Gy (Dmax) weniger Dosis an der Peniswurzel als das CT-konturierte PTV. Für 6 Patienten, geplant mit dem adaptiven PTV, war die abgeschätzte Maximaldosis Dmax (7-Felder-IMRT + IBT) an der Peniswurzel <70 Gy, wohingegen beim CT-basierten PTV nur 1 Patient das Kriterium erfüllte.

Schlussfolgerung

Die MRT-basierte Konturierung und die 7‑Felder-IMRT-Planung reduzierte die Peniswurzeldosis. Die Gesamtdosis der Peniswurzel bestehend aus der 7‑Felder-IMRT- und IBT-Planung zeigte sich reduziert, wobei die MRT- und CT- Konturierungsanalyse nur auf die externe 7‑Felder-Bestrahlungsplanung basiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wallner KE, Merrick GS, Benson ML et al (2002) Penile bulb imaging. Int J Radiat Oncol Biol Phys 53:928–933

    Article  PubMed  Google Scholar 

  2. Roach M (2005) Is it time to change the standard of care from CT to MRI for defining the apex of the prostate to accomplish potency-sparing radiotherapy? Int J Radiat Oncol Biol Phys 61:1–2

    Article  PubMed  Google Scholar 

  3. McLaughlin PW, Narayana V, Meriowitz A et al (2005) Vessel-sparing prostate radiotherapy: Dose limitation to critical erectile vascular structures (internal pudendal artery and corpus cavernosum) defined by MRI. Int J Radiat Oncol Biol Phys 61:20–31

    Article  PubMed  Google Scholar 

  4. Roach M, Nam J, Gagliardi G et al (2010) Radiation dose-volume effects and the penile bulb. Int J Radiat Oncol Biol Phys 76:130–134

    Article  Google Scholar 

  5. van der Wielen GJ, Hoogeman MS, Dohle GR et al (2008) Dose-volume parameters of the corpora Cavernosa do not correlate with erectile dysfunction after external beam radiotherapy for prostate cancer: results from a dose-escalation trial. Int J Radiat Oncol Biol Phys 71:795–800

    Article  PubMed  Google Scholar 

  6. Perna L, Fiorino C, Cozzarini C et al (2009) Sparing the penile bulb in the radical irradiation of clinically localised prostate carcinoma: a comparison between MRI and CT prostatic apex definition in 3DCRT, linac-IMRT and helical Tomotherapy. Radiother Oncol 93:57–63

    Article  PubMed  Google Scholar 

  7. Cozzarini C, Rancati T, Badenchini F et al (2016) Baseline-Status und Dosis auf den Bulbus penis als Prädiktoren für Impotenz ein Jahr nach Radiotherapie bei Prostatakrebs. Strahlenther Onkol 192:297–304

    Article  PubMed  Google Scholar 

  8. Milosevic M, Voruganti S, Blend R et al (1998) Magnetic resonance imaging (MRI) for localization of the prostatic apex: comparison to computed tomography (CT) and urethrography. Radiother Oncol 47:277–284

    Article  CAS  PubMed  Google Scholar 

  9. Seppälä T, Visapää H, Collan J et al (2015) Converting from CT- to MRI-only-based target definition in radiotherapy of localized prostate cancer. Strahlenther Onkol 1:7

    Google Scholar 

  10. Kapanen M, Collan J, Beule A et al (2013) Commissioning of MRI-only based treatment planning procedure for external beam radiotherapy of prostate. Magn Reson Med 70:127–135

    Article  PubMed  Google Scholar 

  11. Buyyounouski MK, Horwitz EM, Uzzo RG et al (2004) The radiation doses to erectile tissues defined with magnetic resonance imaging after intensity-modulated radiation therapy or iodine-125 brachytherapy. Int J Radiat Oncol Biol Phys 59:1383–1391

    Article  PubMed  Google Scholar 

  12. Maggio A, Gabriele D, Garibaldi E et al (2017) Impact of a rectal and bladder preparation protocol on prostate cancer outcome in patients treated with external beam radiotherapy. Strahlenther Onkol 193:722–732

    Article  CAS  PubMed  Google Scholar 

  13. D’Amico AV, Manola J, Loffredo M et al (2001) A practical method to achieve prostate gland immobilization and target verification for daily treatment. Int J Radiat Oncol Biol Phys 51:1431–1436

    Article  PubMed  Google Scholar 

  14. Smeenk RJ, Louwe RJ, Langen KM et al (2012) An endorectal balloon reduces intrafraction prostate motion during radiotherapy. Int J Radiat Oncol Biol Phys 83:661–669

    Article  PubMed  Google Scholar 

  15. Steiner E, Georg D, Goldner G et al (2013) Prostate and patient intrafraction motion: impact on treatment time-dependent planning margins for patients with endorectal balloon. Int J Radiat Oncol Biol Phys 86:755–761

    Article  PubMed  Google Scholar 

  16. Teh BS, Woo SY, Mai WY et al (2002) Clinical experience with intensity-modulated radiation therapy (IMRT) for prostate cancer with the use of rectal balloon for prostate immobilization. Med Dosim 27:105–113

    Article  PubMed  Google Scholar 

  17. Wang KK, Vapiwala N, Deville C et al (2012) A study to quantify the effectiveness of daily endorectal balloon for prostate intrafraction motion management. Int J Radiat Oncol Biol Phys 83:1055–1063

    Article  PubMed  Google Scholar 

  18. Hartmann J, Gellermann J, Brandt T et al (2016) Optimization of single Voxel MR spectroscopy sequence parameters and data analysis methods for thermometry in deep Hyperthermia treatments. Technol Cancer Res Treat 44213:1–30

    Google Scholar 

  19. Fransson A, Andreo P, Pötter R (2001) Aspects of MR image distortions in radiotherapy treatment planning. Strahlenther Onkol 177:59–73

    Article  CAS  PubMed  Google Scholar 

  20. Schneider E, NessAiver M (2013) The Osteoarthritis Initiative (OAI) magnetic resonance imaging quality assurance update. Osteoarthr Cartil 21:110–116

    Article  CAS  PubMed  Google Scholar 

  21. Roach M, Hanks G, Thames H et al (2006) Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: Recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 65:965–974

    Article  PubMed  Google Scholar 

  22. Jorgo K, Agoston P, Major T et al (2017) Transperineal gold marker implantation for image-guided external beam radiotherapy of prostate cancer : a single institution, prospective study. Strahlenther Onkol 193:452–458

    Article  PubMed  Google Scholar 

  23. Nyholm T, Nyberg M, Karlsson MGM et al (2009) Systematisation of spatial uncertainties for comparison between a MR and a CT-based radiotherapy workflow for prostate treatments. Radiat Oncol 4:54

    Article  PubMed  PubMed Central  Google Scholar 

  24. Roberson PL, McLaughlin PW, Narayana V et al (2005) Use and uncertainties of mutual information for computed tomography/magnetic resonance (CT/MR) registration post permanent implant of the prostate. Med Phys 32:473–482

    Article  PubMed  Google Scholar 

  25. Lettmaier S, Lotter M, Kreppner S et al (2012) Long term results of a prospective dose escalation phase-II trial: interstitial pulsed-dose-rate brachytherapy as boost for intermediate- and high-risk prostate cancer. Radiother Oncol 104:181–186

    Article  PubMed  Google Scholar 

  26. Both S, Wang KK, Plastaras JP et al (2011) Real-time study of prostate intrafraction motion during external beam radiotherapy with daily endorectal balloon. Int J Radiat Oncol Biol Phys 81:1302–1309

    Article  PubMed  Google Scholar 

  27. Oehler C, Lang S, Dimmerling P et al (2014) PTV margin definition in hypofractionated IGRT of localized prostate cancer using cone beam CT and orthogonal image pairs with fiducial markers. Radiat Oncol 9:229

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ritter M (2008) Rationale, conduct, and outcome using hypofractionated radiotherapy in prostate cancer. Semin Radiat Oncol 18(4):249–256. https://doi.org/10.1016/j.semradonc.2008.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dolezel M, Odrazka K, Zouhar M et al (2015) Comparing morbidity and cancer control after 3D-conformal (70/74 Gy) and intensity modulated radiotherapy (78/82 Gy) for prostate cancer. Strahlenther Onkol 191:338–346

    Article  PubMed  Google Scholar 

  30. Guckenberger M, Lawrenz I, Flentje M (2014) Moderately hypofractionated radiotherapy for localized prostate cancer: long-term outcome using IMRT and volumetric IGRT. Strahlenther Onkol 190:48–53

    Article  CAS  PubMed  Google Scholar 

  31. Buyyounouski MK, Horwitz EM, Price RA et al (2004) Intensity-modulated radiotherapy with mri simulation to reduce doses received by erectile tissue during prostate cancer treatment. Int J Radiat Oncol Biol Phys 58:743–749

    Article  PubMed  Google Scholar 

  32. Kao J, Turian J, Meyers A et al (2004) Sparing of the penile bulb and proximal penile structures with intensity-modulated radiation therapy for prostate cancer. Br J Radiol 77:129–136

    Article  CAS  PubMed  Google Scholar 

  33. Sethi A, Mohideen N, Leybovich L et al (2003) Role of IMRT in reducing penile doses in dose escalation for prostate cancer. Int J Radiat Oncol Biol Phys 55:970–978

    Article  PubMed  Google Scholar 

  34. Selek U, Cheung R, Lii M et al (2004) Erectile dysfunction and radiation dose to penile base structures: a lack of correlation. Int J Radiat Oncol Biol Phys 59:1039–1046

    Article  PubMed  Google Scholar 

  35. Mangar SA, Sydes MR, Tucker HL et al (2006) Evaluating the relationship between erectile dysfunction and dose received by the penile bulb: Using data from a randomised controlled trial of conformal radiotherapy in prostate cancer (MRC RT01, ISRCTN47772397). Radiother Oncol 80:355–362

    Article  PubMed  Google Scholar 

  36. Wernicke AG, Valicenti R, DiEva K et al (2004) Radiation dose delivered to the proximal penis as a predictor of the risk of erectile dysfunction after three-dimensional conformal radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 60:1357–1363

    Article  PubMed  Google Scholar 

  37. Roach M, Winter K, Michalski JM et al (2004) Penile bulb dose and impotence after three-dimensional conformal radiotherapy for prostate cancer on RTOG 9406: Findings from a prospective, multi-institutional, phase I/II dose-escalation study. Int J Radiat Oncol Biol Phys 60:1351–1356

    Article  PubMed  Google Scholar 

  38. Fisch BM, Pickett B, Weinberg V et al (2001) Dose of radiation received by the bulb of the penis correlates with risk of impotence after three-dimensional conformal radiotherapy for prostate cancer. Urology 57:955–959

    Article  CAS  PubMed  Google Scholar 

  39. D’Amico a V, Whittington R, Malkowicz SB et al (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280:969–974

    Article  PubMed  Google Scholar 

  40. Schröder FH, Hermanek P, Denis L et al (1992) The TNM classification of prostate cancer. Prostate Suppl 4:129–138

    Article  PubMed  Google Scholar 

  41. Gleason DF (1990) Histologic grading of prostate cancer. Pathology of the prostate. Bostwick, New York, Churchill Livingstone, pp 83–93

    Google Scholar 

  42. Davids M, Zöllner FG, Ruttorf M et al (2014) Fully-automated quality assurance in multi-center studies using MRI phantom measurements. Magn Reson Imaging 32:771–780

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The presented work was performed in partial fulfillment of the requirements for obtaining the degree Dr. rer. biol. hum. at the Friedrich-Alexander-Universität (FAU). The authors would like to thank Asa Ammarin and Stefan Vasiliniuc for language editing and improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bert.

Ethics declarations

Conflict of interest

F. Böckelmann, M. Hammon, S. Lettmaier, R. Fietkau, C. Bert, and F. Putz declare that they have no competing interests.

Caption Electronic Supplementary Material

66_2018_1377_MOESM1_ESM.docx

Supplementary I: Commissioning of an in-house 1.5 T MRI hyperthermia hybrid system; Table 1: MRI sequence parameters for ACR phantom protocol performed with CP Head Array coil; Table 2: Results of MRI Quality Assurance.

Supplementary II: Table 1: Sequence parameters for MRI prostate protocol performed with CP Body Array Flex coil at 1.5 Tesla; Figure 1: Example of a standard temporary IBT boost irradiation with needles in situ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böckelmann, F., Hammon, M., Lettmaier, S. et al. Penile bulb sparing in prostate cancer radiotherapy. Strahlenther Onkol 195, 153–163 (2019). https://doi.org/10.1007/s00066-018-1377-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-018-1377-0

Keywords

Schlüsselwörter

Navigation