Skip to main content

Advertisement

Log in

Does 11C-choline PET-CT contribute to multiparametric MRI for prostate cancer localisation?

Trägt 11C-Cholin-PET-CT zur multiparametrischen MR-Bildgebung zur Lokalisierung von Prostatakrebs bei?

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

The aim of this work was to determine whether 11C-choline positron emission tomography (PET)–computed tomography (CT) makes a positive contribution to multiparametric magnetic resonance imaging (MRI) for localisation of intraprostatic tumour nodules.

Patients and methods

A total of 73 patients with biopsy-proven intermediate- and high-risk prostate cancer were enrolled in a prospective imaging study consisting of T2-weighted (T2w), dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) MRI and 11C-choline PET-CT before radical prostatectomy. Cancerous regions were delineated on the whole-mount prostatectomy sections and on the different MRI modalities and analysed in 24 segments per patient (3 sections, 8 segments each). To analyse PET-CT images, standardized uptake values (SUV) were calculated per segment.

Results

In total, 1,752 segments were analyzed of which 708 (40.4 %) were found to be malignant. A high specificity (94.7, 93.6 and 92.2 %) but relatively low sensitivity (31.2, 24.9 and 44.1 %) for tumour localisation was obtained with T2w, DCE and DW MRI, respectively. Sensitivity values significantly increased when combining all MRI modalities (57.2 %). For PET-CT, mean SUVmax of malignant octants was significantly higher than mean SUVmax of benign octants (3.68 ± 1.30 vs. 3.12 ± 1.02, p < 0.0001). In terms of accuracy, the benefit of adding PET-CT to (multiparametric) MRI was less than 1 %.

Conclusion

The additional value of 11C-choline PET-CT to MRI in localising intraprostatic tumour nodules is limited, especially when multiparametric MRI is used.

Zusammenfassung

Hintergrund und Ziel

Es galt festzustellen, ob die 11C-Cholin-Positronenemissionstomographie-Computertomographie (11C-Cholin-PET-CT) bei der multiparametrischen Magnetresonanztomographie (MR) für die Lokalisierung von intraprostatischen Tumorknoten einen Mehrwert darstellt.

Patienten und Methodik

Insgesamt 73 Patienten mit durch Biopsie nachgewiesenem Prostatakarzinom von mittlerem und hohem Risiko nahmen an einer prospektiven bildgebenden Studie, bestehend aus T2-gewichteter (T2w), dynamischen Kontrast- (DCE) und diffusionsgewichteter (DW) MR und 11C-Cholin-PET-CT vor radikaler Prostatektomie, teil. Krebsartige Regionen wurden auf den „Whole-mount“-Prostatektomieschnitten und auf den verschiedenen MR-Modalitäten abgegrenzt. Pro Patient wurden 24 Segmente analysiert (3 Schnitte mit jeweils 8 Segmenten). Um PET-CT-Bilder zu analysieren, wurden standardisierte Uptake-Values (SUV) pro Segment berechnet.

Ergebnisse

Insgesamt wurden 1752 Segmente analysiert, wovon 708 (40,4 %) als bösartig klassifiziert wurden. Mit T2w, DCE und DW-MR wurde jeweils eine hohe Spezifität (94,7%, 93,6% und 92,2 %) aber eine relativ geringe Sensitivität (31,2%, 24,9% und 44,1 %) für die Tumorlokalisation erzielt. Die Sensitivität nahm bei der Kombination aller MR-Modalitäten (57,2 %) signifikant zu. Für die PET-CT war der mittlere SUVmax von malignen Oktanten signifikant höher als der mittlere SUVmax von gutartigen Oktanten (3,68 ± 1,30 vs. 3,12 ± 1,02; p < 0,0001). Hinsichtlich der Genauigkeit betrug der zusätzliche Nutzen der PET-CT zur (multiparametrischen) MR weniger als 1 %.

Schlussfolgerung

Der Mehrwert von 11C-Cholin-PET-CT bei der MR zur Lokalisierung von intraprostatischen Tumorknoten ist begrenzt, vor allem bei der Verwendung von multiparametrischer MR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Mazaheri Y, Shukla-Dave A, Muellner A, Hricak H (2008) MR imaging of the prostate in clinical practice. MAGMA 21:379–392

    Article  PubMed  Google Scholar 

  2. Wachter S, Wachter-Gerstner N, Bock T et al (2002) Interobserver comparison of CT and MRI-based prostate apex definition. Clinical relevance for conformal radiotherapy treatment planning. Strahlenther Onkol 178:263–268

    Article  PubMed  Google Scholar 

  3. Turkbey B, Pinto PA, Choyke PL (2009) Imaging techniques for prostate cancer: implications for focal therapy. Nat Rev Urol 6:191–203

    Article  PubMed  Google Scholar 

  4. Groenendaal G, Berg CA van den, Korporaal JG et al (2010) Simultaneous MRI diffusion and perfusion imaging for tumor delineation in prostate cancer patients. Radiother Oncol 95:185–190

    Article  PubMed  Google Scholar 

  5. Alonzi R, Padhani AR, Allen C (2007) Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol 63:335–350

    Article  PubMed  Google Scholar 

  6. Tan CH, Wang J, Kundra V (2011) Diffusion weighted imaging in prostate cancer. Eur Radiol 21:593–603

    Article  PubMed  Google Scholar 

  7. Delongchamps NB, Rouanne M, Flam T et al (2011) Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int 107:1411–1418

    Article  PubMed  Google Scholar 

  8. Langer DL, Kwast TH van der, Evans AJ et al (2009) Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging 30:327–334

    Article  PubMed  Google Scholar 

  9. Sciarra A, Barentsz J, Bjartell A et al (2011) Advances in magnetic resonance imaging: how they are changing the management of prostate cancer. Eur Urol 59:962–977

    Article  PubMed  Google Scholar 

  10. Seitz M, Shukla-Dave A, Bjartell A et al (2009) Functional magnetic resonance imaging in prostate cancer. Eur Urol 55:801–814

    Article  PubMed  CAS  Google Scholar 

  11. Turkbey B, Pinto PA, Mani H et al (2010) Prostate cancer: value of multiparametric MR imaging at 3 T for detection—histopathologic correlation. Radiology 255:89–99

    Article  PubMed  Google Scholar 

  12. Jadvar H (2011) Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med 52:81–89

    Article  PubMed  Google Scholar 

  13. Picchio M, Messa C, Landoni C et al (2003) Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 169:1337–1340

    Article  PubMed  CAS  Google Scholar 

  14. Grosu AL, Piert M, Weber WA et al (2005) Positron emission tomography for radiation treatment planning. Strahlenther Onkol 181:483–499

    Article  PubMed  Google Scholar 

  15. Picchio M, Giovannini E, Crivellaro C et al (2010) Clinical evidence on PET/CT for radiation therapy planning in prostate cancer. Radiother Oncol 96:347–350

    Article  PubMed  Google Scholar 

  16. Pinkawa M, Holy R, Piroth MD et al (2010) Intensity-modulated radiotherapy for prostate cancer implementing molecular imaging with 18F-choline PET-CT to define a simultaneous integrated boost. Strahlenther Onkol 186:600–606

    Article  PubMed  Google Scholar 

  17. Goldner G, Bombosch V, Geinitz H et al (2009) Moderate risk-adapted dose escalation with three-dimensional conformal radiotherapy of localized prostate cancer from 70 to 74 Gy. First report on 5-year morbidity and biochemical control from a prospective Austrian–German multicenter phase II trial. Strahlenther Onkol 185:94–100

    Article  PubMed  Google Scholar 

  18. Geier M, Astner ST, Duma MN et al (2012) Dose-escalated simultaneous integrated-boost treatment of prostate cancer patients via helical tomotherapy. Strahlenther Onkol 188:410–416

    Article  PubMed  CAS  Google Scholar 

  19. D’Amico AV, Whittington R, Malkowicz SB et al (2002) Biochemical outcome after radical prostatectomy or external beam radiation therapy for patients with clinically localized prostate carcinoma in the prostate specific antigen era. Cancer 95:281–286

    Article  Google Scholar 

  20. Hentschel B, Oehler W, Strauss D et al (2011) Definition of the CTV prostate in CT and MRI by using CT-MRI image fusion in IMRT planning for prostate cancer. Strahlenther Onkol 187:183–190

    Article  PubMed  Google Scholar 

  21. Villeirs GM, Van VK, Vakaet L et al (2005) Interobserver delineation variation using CT versus combined CT + MRI in intensity-modulated radiotherapy for prostate cancer. Strahlenther Onkol 181:424–430

    Article  PubMed  Google Scholar 

  22. Maes F, Collignon A, Vandermeulen D et al (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198

    Article  PubMed  CAS  Google Scholar 

  23. Montironi R, Kwast T van der, Boccon-Gibod L et al (2003) Handling and pathology reporting of radical prostatectomy specimens. Eur Urol 44:626–636

    Article  PubMed  Google Scholar 

  24. Tamada T, Sone T, Jo Y et al (2008) Prostate cancer: relationships between postbiopsy hemorrhage and tumor detectability at MR diagnosis. Radiology 248:531–539

    Article  PubMed  Google Scholar 

  25. Chang JH, Joon DL, Lee ST et al (2011) Histopathological correlation of (11)C-choline PET scans for target volume definition in radical prostate radiotherapy. Radiother Oncol 99:187–192

    Article  PubMed  Google Scholar 

  26. Farsad M, Schiavina R, Castellucci P et al (2005) Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 46:1642–1649

    PubMed  CAS  Google Scholar 

  27. Giovacchini G, Picchio M, Coradeschi E et al (2008) [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 35:1065–1073

    Article  PubMed  CAS  Google Scholar 

  28. Reske SN, Blumstein NM, Neumaier B et al (2006) Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 47:1249–1254

    PubMed  CAS  Google Scholar 

  29. Sutinen E, Nurmi M, Roivainen A et al (2004) Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging 31:317–324

    Article  PubMed  CAS  Google Scholar 

  30. Park H, Wood D, Hussain H et al (2012) Introducing parametric fusion PET/MRI of primary prostate cancer. J Nucl Med 53:546–551

    Article  PubMed  CAS  Google Scholar 

  31. Testa C, Schiavina R, Lodi R et al (2007) Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET/CT. Radiology 244:797–806

    Article  PubMed  Google Scholar 

  32. Jambor I, Borra R, Kemppainen J et al (2010) Functional imaging of localized prostate cancer aggressiveness using 11C-acetate PET/CT and 1H-MR spectroscopy. J Nucl Med 51:1676–1683

    Article  PubMed  CAS  Google Scholar 

  33. Yamaguchi T, Lee J, Uemura H et al (2005) Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 32:742–748

    Article  PubMed  CAS  Google Scholar 

  34. Martino P, Scattoni V, Galosi AB et al (2011) Role of imaging and biopsy to assess local recurrence after definitive treatment for prostate carcinoma (surgery, radiotherapy, cryotherapy, HIFU). World J Urol 29:595–605

    Article  PubMed  Google Scholar 

  35. Panebianco V, Sciarra A, Lisi D et al (2012) Prostate cancer: 1HMRS-DCEMR at 3T versus [(18)F]choline PET/CT in the detection of local prostate cancer recurrence in men with biochemical progression after radical retropubic prostatectomy (RRP). Eur J Radiol 81:700–708

    Article  PubMed  Google Scholar 

  36. Groenendaal G, Borren A, Moman MR et al (2012) Pathologic validation of a model based on diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for tumor delineation in the prostate peripheral zone. Int J Radiat Oncol Biol Phys 82:e537–e544

    Article  PubMed  Google Scholar 

  37. Bundschuh RA, Wendl CM, Weirich G et al (2013) Tumour volume delineation in prostate cancer assessed by [(11)C]choline PET/CT: validation with surgical specimens. Eur J Nucl Med Mol Imaging 40:824–831

    Article  PubMed  Google Scholar 

  38. Heide UA van der, Houweling AC, Groenendaal G et al (2012) Functional MRI for radiotherapy dose painting. Magn Reson Imaging 30:1216–1223

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported through a research grant of IWT (Institute for the Promotion of Innovation by Science and Technology in Flanders; IWT TBM 060793), The National Cancer Plan 29–Belgium and by the “Stichting Emmanuel van der Schueren—VLK”.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Van den Bergh.

Additional information

Van den Bergh Laura and Isebaert Sofie contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van den Bergh, L., Isebaert, S., Koole, M. et al. Does 11C-choline PET-CT contribute to multiparametric MRI for prostate cancer localisation?. Strahlenther Onkol 189, 789–795 (2013). https://doi.org/10.1007/s00066-013-0359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-013-0359-5

Keywords

Schlüsselwörter

Navigation