Skip to main content

Advertisement

Log in

Dose-escalated simultaneous integrated-boost treatment of prostate cancer patients via helical tomotherapy

Dosiseskalation aufgrund simultan integrierter Boost-Behandlung bei Prostatakarzinompatienten mittels helikaler Tomotherapie

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The goal of this work was to assess the feasibility of moderately hypofractionated simultaneous integrated-boost intensity-modulated radiotherapy (SIB-IMRT) with helical tomotherapy in patients with localized prostate cancer regarding acute side effects and dose–volume histogram data (DVH data).

Methods

Acute side effects and DVH data were evaluated of the first 40 intermediate risk prostate cancer patients treated with a definitive daily image-guided SIB-IMRT protocol via helical tomotherapy in our department. The planning target volume including the prostate and the base of the seminal vesicles with safety margins was treated with 70 Gy in 35 fractions. The boost volume containing the prostate and 3 mm safety margins (5 mm craniocaudal) was treated as SIB to a total dose of 76 Gy (2.17 Gy per fraction). Planning constraints for the anterior rectal wall were set in order not to exceed the dose of 76 Gy prescribed to the boost volume. Acute toxicity was evaluated prospectively using a modified CTCAE (Common Terminology Criteria for Adverse Events) score.

Results

SIB-IMRT allowed good rectal sparing, although the full boost dose was permitted to the anterior rectal wall. Median rectum dose was 38 Gy in all patients and the median volumes receiving at least 65 Gy (V65), 70 Gy (V70), and 75 Gy (V75) were 13.5%, 9%, and 3%, respectively. No grade 4 toxicity was observed. Acute grade 3 toxicity was observed in 20% of patients involving nocturia only. Grade 2 acute intestinal and urological side effects occurred in 25% and 57.5%, respectively. No correlation was found between acute toxicity and the DVH data.

Conclusion

This institutional SIB-IMRT protocol using daily image guidance as a precondition for smaller safety margins allows dose escalation to the prostate without increasing acute toxicity.

Zusammenfassung

Ziel

Die Verträglichkeit des simultan integrierten Boost-Protokolls unserer Klinik als primäre Therapie für Patienten mit lokal begrenztem Prostatakarzinom sollte bezüglich der Akuttoxizität unter Berücksichtigung der individuellen DVH-Daten evaluiert werden.

Methoden

Untersucht wurden die ersten 40 Patienten mit intermediärem Risiko bei lokal begrenztem Prostatakarzinom, die mit vorgestelltem SIB-IMRT-Protokoll mittels helikaler Tomotherapie an unserer Klinik behandelt wurden. Die definitive Strahlentherapie bis zu einer Gesamtdosis von 76 Gy (Einzeldosis 2,17 Gy) erfolgte unter täglicher Bildanleitung („Image Guidance“). Das Planungszielvolumen (Prostata und Samenblasenbasis mit Sicherheitssaum) wurde mit 70 Gy (Einzeldosis 2 Gy) behandelt, während das Boostvolumen des simultan integrierten Boosts (Prostata mit 3 mm Sicherheitssaum bzw. 5 mm kraniokaudal) mit 2,17 Gy Einzeldosis therapiert wurde. Das erlaubte Dosismaximum im Bereich der vom Boostvolumen erfassten Rektumvorderwand entsprach den verordneten 76 Gy des Boosts. Die gastrointestinale und urogenitale Akuttoxizität wurden prospektiv mittels eines modifizierten CTCAE (Common Terminology Criteria for Adverse Events)-Scoringsystems evaluiert (Tab. 1). Die DVH-Daten der Patienten wurden mit den Akuttoxizitätsdaten korreliert.

Ergebnisse

Das vorgestellte SIB-Therapieprotokoll ermöglicht eine gute Rektumschonung, obwohl die verordnete Boostdosis als Dosismaximum im Bereich der Rektumvorderwand akzeptiert wurde. Die mediane Rektumdosis betrug 38 Gy. V65, V70 und V75 waren entsprechend 13,5%, 9% und 3% (Tab. 3). Neben drittgradiger Nykturie bei 20% der Patienten wurden zweitgradige gastrointestinale und urogenitale Nebenwirkungen bei 25% bzw. 57,5% der Patienten beobachtet (Fig. 3, Tab. 4). Signifikante Zusammenhänge zwischen den DVH-Daten und der Akuttoxizität konnten nicht gezeigt werden.

Zusammenfassung

Das vorgestellte SIB-IMRT-Protokoll mit täglicher Bildführng – als Voraussetzung für verkleinerte Sicherheitssäume – ermöglicht eine leicht hypofraktionierte, mäßige Dosiseskalation an der Tomotherapie ohne Erhöhung der Akutnebenwirkungen. Die chronische Toxizität ist Gegenstand laufender Nachbeobachtung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Brenner DJ (2003) Hypofractionation for prostate cancer radiotherapy – what are the issues? Int J Radiat Oncol Biol Phys 57:912–914

    Article  PubMed  Google Scholar 

  2. De Meerleer G, Vakaet L, Meersschout S et al (2004) Intensity-modulated radiotherapy as primary treatment for prostate cancer: acute toxicity in 114 patients. Int J Radiat Oncol Biol Phys 60:777–787

    Article  Google Scholar 

  3. Dearnaley DP, Sydes MR, Graham JD et al (2007) Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol 8:475–487

    Article  PubMed  Google Scholar 

  4. Di Muzio N, Fiorino C, Cozzarini C et al (2009) Phase I-II study of hypofractionated simultaneous integrated boost with tomotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 74:392–398

    Article  Google Scholar 

  5. Dolezel M, Odrazka K, Vaculikova M et al (2010) Dose escalation in prostate radiotherapy up to 82 Gy using simultaneous integrated boost: direct comparison of acute and late toxicity with 3D-CRT 74 Gy and IMRT 78 Gy. Strahlenther Onkol 186:197–202

    Article  PubMed  Google Scholar 

  6. Fiorino C, Di Muzio N, Broggi S et al (2008) Evidence of limited motion of the prostate by carefully emptying the rectum as assessed by daily MVCT image guidance with helical tomotherapy. Int J Radiat Oncol Biol Phys 71:611–617

    Article  PubMed  Google Scholar 

  7. Fowler JF, Ritter MA, Chappell RJ, Brenner DJ (2003) What hypofractionated protocols should be tested for prostate cancer? Int J Radiat Oncol Biol Phys 56:1093–1104

    Article  PubMed  Google Scholar 

  8. Geinitz H, Thamm R, Keller M et al (2011) Longitudinal study of intestinal symptoms and fecal continence in patients with conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 79:1373–1380

    Article  PubMed  Google Scholar 

  9. Ghadjar P, Gwerder N, Manser P et al (2010) High-dose (80 Gy) intensity-modulated radiation therapy with daily image-guidance as primary treatment for localized prostate cancer. Strahlenther Onkol 186:687–692

    Article  PubMed  Google Scholar 

  10. Goldner G, Dimopoulos J, Kirisits C, Potter R (2009) Moderate dose escalation in three-dimensional conformal localized prostate cancer radiotherapy: single-institutional experience in 398 patients comparing 66 Gy versus 70 Gy versus 74 Gy. Strahlenther Onkol 185:438–445

    Article  PubMed  Google Scholar 

  11. Guckenberger M, Flentje M (2007) Intensity-modulated radiotherapy (IMRT) of localized prostate cancer: a review and future perspectives. Strahlenther Onkol 183:57–62

    Article  PubMed  Google Scholar 

  12. Guckenberger M, Ok S, Polat B et al (2010) Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer. Strahlenther Onkol 186:535–543

    Article  PubMed  Google Scholar 

  13. Hentschel B, Oehler W, Strauss D et al (2011) Definition of the CTV prostate in CT and MRI by using CT-MRI image fusion in IMRT planning for prostate cancer. Strahlenther Onkol 187:183–190

    Article  PubMed  Google Scholar 

  14. Junius S, Haustermans K, Bussels B et al (2007) Hypofractionated intensity modulated irradiation for localized prostate cancer, results from a phase I/II feasibility study. Radiat Oncol 2:29

    Article  PubMed  Google Scholar 

  15. Kassim I, Dirkx ML, Heijmen BJ (2009) Evaluation of the dosimetric impact of non-exclusion of the rectum from the boost PTV in IMRT treatment plans for prostate cancer patients. Radiother Oncol 92:62–67

    Article  PubMed  Google Scholar 

  16. Keiler L, Dobbins D, Kulasekere R, Einstein D (2007) Tomotherapy for prostate adenocarcinoma: a report on acute toxicity. Radiother Oncol 84:171–176

    Article  PubMed  Google Scholar 

  17. Kotte AN, Hofman P, Lagendijk JJ et al (20007) Intrafraction motion of the prostate during external-beam radiation therapy: analysis of 427 patients with implanted fiducial markers. Int J Radiat Oncol Biol Phys 69:419–425

    Article  Google Scholar 

  18. Kuban DA, Tucker SL, Dong L et al (2008) Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys 70:67–74

    Article  PubMed  Google Scholar 

  19. Kupelian PA, Willoughby TR, Reddy CA et al (2007) Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: Cleveland Clinic experience. Int J Radiat Oncol Biol Phys 68:1424–1430

    Article  PubMed  Google Scholar 

  20. Levegrun S, Jackson A, Zelefsky MJ et al (2002) Risk group dependence of dose-response for biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer. Radiother Oncol 63:11–26

    Article  PubMed  Google Scholar 

  21. Li XA, Wang JZ, Jursinic PA et al (2005) Dosimetric advantages of IMRT simultaneous integrated boost for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 61:1251–1257

    Article  PubMed  Google Scholar 

  22. Lordick F, Geinitz H, Theisen J et al (2006) Increased risk of ischemic bowel complications during treatment with bevacizumab after pelvic irradiation: report of three cases. Int J Radiat Oncol Biol Phys 64:1295–1298

    Article  PubMed  CAS  Google Scholar 

  23. Martin JM, Rosewall T, Bayley A et al (2007) Phase II trial of hypofractionated image-guided intensity-modulated radiotherapy for localized prostate adenocarcinoma. Int J Radiat Oncol Biol Phys 69:1084–1089

    Article  PubMed  Google Scholar 

  24. Nickers P, Hermesse J, Deneufbourg JM et al (2010) Which alpha/beta ratio and half-time of repair are useful for predicting outcomes in prostate cancer? Radiother Oncol 97(3):462–466

    Article  PubMed  Google Scholar 

  25. Peeters ST, Heemsbergen WD, Koper PC et al (2006) Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol 24:1990–1996

    Article  PubMed  Google Scholar 

  26. Pervez N, Small C, MacKenzie M et al (2010) Acute toxicity in high-risk prostate cancer patients treated with androgen suppression and hypofractionated intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 76:57–64

    Article  PubMed  CAS  Google Scholar 

  27. Pollack A, Hanlon AL, Horwitz EM et al (2006) Dosimetry and preliminary acute toxicity in the first 100 men treated for prostate cancer on a randomized hypofractionation dose escalation trial. Int J Radiat Oncol Biol Phys 64:518–526

    Article  PubMed  Google Scholar 

  28. Pollack A, Zagars GK, Starkschall G et al (2002) Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 53:1097–1105

    Article  PubMed  Google Scholar 

  29. Proust-Lima C, Taylor JM, Secher S et al (2011) Confirmation of a low alpha/beta ratio for prostate cancer treated by external beam radiation therapy alone using a post-treatment repeated-measures model for PSA dynamics. Int J Radiat Oncol Biol Phys 79:195–201

    Article  PubMed  Google Scholar 

  30. Roach M 3rd, Hanks G, Thames H Jr et al (2006) Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 65:965–974

    Article  PubMed  Google Scholar 

  31. Schwartz DJ, Sengupta S, Hillman DW et al (2007) Prediction of radial distance of extraprostatic extension from pretherapy factors. Int J Radiat Oncol Biol Phys 69:411–418

    Article  PubMed  Google Scholar 

  32. Singh AK, Guion P, Sears-Crouse N et al (2007) Simultaneous integrated boost of biopsy proven, MRI defined dominant intra-prostatic lesions to 95 Gray with IMRT: early results of a phase I NCI study. Radiat Oncol 2:36

    Article  PubMed  Google Scholar 

  33. Soete G, Arcangeli S, De Meerleer G et al (2006) Phase II study of a four-week hypofractionated external beam radiotherapy regimen for prostate cancer: report on acute toxicity. Radiother Oncol 80:78–81

    Article  PubMed  Google Scholar 

  34. Wang KK, Vapiwala N, Deville C et al (2011) A study to quantify the effectiveness of daily endorectal balloon for prostate intrafraction motion management. Int J Radiat Oncol Biol Phys (in press)

  35. Zelefsky MJ, Chan H, Hunt M et al (2006) Long-term outcome of high dose intensity modulated radiation therapy for patients with clinically localized prostate cancer. J Urol 176:1415–1419

    Article  PubMed  Google Scholar 

  36. Zelefsky MJ, Fuks Z, Hunt M et al (2002) High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 53:1111–1116

    Article  PubMed  Google Scholar 

  37. Zietman AL, Bae K, Slater JD et al (2010) Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95–09. J Clin Oncol 28:1106–1111

    Article  PubMed  Google Scholar 

  38. Zucca S, Carau B, Solla I et al (2011) Prostate image-guided radiotherapy by megavolt cone-beam CT. Strahlenther Onkol 187:473–478

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Geinitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geier, M., Astner, S., Duma, M. et al. Dose-escalated simultaneous integrated-boost treatment of prostate cancer patients via helical tomotherapy. Strahlenther Onkol 188, 410–416 (2012). https://doi.org/10.1007/s00066-012-0081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0081-8

Keywords

Schlüsselworte

Navigation