Skip to main content
Log in

Accurate estimation of dose distributions inside an eye irradiated with 106Ru plaques

Präzise Bestimmung der Dosisverteilung im Auge bei der Bestrahlung mit 106Ru-Applikatoren

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

Irradiation of intraocular tumors requires dedicated techniques, such as brachytherapy with 106Ru plaques. The currently available treatment planning system relies on the assumption that the eye is a homogeneous water sphere and on simplified radiation transport physics. However, accurate dose distributions and their assessment demand better models for both the eye and the physics.

Methods

The Monte Carlo code PENELOPE, conveniently adapted to simulate the beta decay of 106Ru over 106Rh into 106Pd, was used to simulate radiation transport based on a computerized tomography scan of a patient’s eye. A detailed geometrical description of two plaques (models CCA and CCB) from the manufacturer BEBIG was embedded in the computerized tomography scan.

Results

The simulations were firstly validated by comparison with experimental results in a water phantom. Dose maps were computed for three plaque locations on the eyeball. From these maps, isodose curves and cumulative dose-volume histograms in the eye and for the structures at risk were assessed. For example, it was observed that a 4-mm anterior displacement with respect to a posterior placement of a CCA plaque for treating a posterior tumor would reduce from 40 to 0% the volume of the optic disc receiving more than 80 Gy. Such a small difference in anatomical position leads to a change in the dose that is crucial for side effects, especially with respect to visual acuity. The radiation oncologist has to bring these large changes in absorbed dose in the structures at risk to the attention of the surgeon, especially when the plaque has to be positioned close to relevant tissues.

Conclusion

The detailed geometry of an eye plaque in computerized and segmented tomography of a realistic patient phantom was simulated accurately. Dose-volume histograms for relevant anatomical structures of the eye and the orbit were obtained with unprecedented accuracy. This represents an important step toward an optimized brachytherapy treatment of ocular tumors.

Zusammenfassung

Hintergrund

Die Bestrahlung intraokularer Tumoren erfordert spezielle Techniken wie die Brachytherapie mittels 106Ru-Applikatoren. Alle derzeitigen verfügbaren Näherungen zur Planung der Dosisverteilung beruhen auf der Annahme, das Auge sei eine homogene mit Wasser gefüllte Kugel, und auf simplen Strahlungstransportmodellen. Eine korrekte Berechnung der Dosisverteilung bedarf jedoch weiterentwickelter Modelle sowohl für das Auge als auch für die zugrunde liegenden physikalischen Phänomene.

Methodik

Der Monte-Carlo-Code PENELOPE ist zur Berechnung des Betazerfalls von 106Ru über 106Rh zu 106Pd geeignet und wurde verwendet, um den Strahlungstransport in einem Phantom zu berechnen, das auf der Computertomographie eines Auges basiert. Dabei wurde ein detailliertes geometrisches Modell von 2 Applikatoren für die Brachytherapie am Auge (Modelle CCA und CCB des Herstellers BEBIG) verwendet.

Ergebnisse

Die Computersimulationen wurden zunächst mit Messdaten validiert. Dosisverteilungen wurde für drei unterschiedliche Lokalisationen der verschiedenen Applikatoren berechnet. Isodosen und Dosis-Volumen-Histogramme im Auge und in definierten Risikostrukturen wurden erstellt. So führt zum Beispiel bei der Bestrahlung eines Tumors in der Nähe des Äquators eine geringe anteriore Verlagerung des CCA-Applikators um 4 mm dazu, dass 0% der Papille eine Dosis über 80 Gy erhält, während bei der posterioren Position 40% der Papille mit über 80 Gy belastet wird. Dieser geringe Unterschied in der anatomischen Positionierung des Applikators kann durch den erheblichen Unterschied in der Dosisverteilung einen großen Einfluss auf Nebenwirkungen, insbesondere das Sehvermögen, haben. Es gehört zu den Aufgaben des Strahlentherapeuten, dem Operateur zu verdeutlichen, wie dramatisch die Veränderung der applizierten Dosis an einer Risikostruktur sein kann, wenn Zielvolumen und Risikoorgan sehr nahe beieinander liegen.

Schlussfolgerung

Erstmals wurde es möglich, eine detaillierte Geometrie eines Augenapplikators innerhalb einer computerisierten und segmentierten Tomographie eines realistischen Patientenphantoms präzise zu simulieren. Dosis-Volumen-Histogramme für die relevanten anatomischen Strukturen des Auges und der Orbita wurden mit bisher nicht erreichter Präzision berechnet. Dies stellt einen wichtigen Schritt zur weiteren Optimisierung der Brachytherapie bei Augentumoren dar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Astrahan MA (2003) A patch source model for treatment planning of ruthenium ophthalmic applicators. Med Phys 30:1219–1228

    Article  PubMed  CAS  Google Scholar 

  2. Baró J, Sempau J, Fernández-Varea JM, Salvat F (1995) PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Meth B 100:31–46

    Article  Google Scholar 

  3. BEBIG Isotopentechnik und Umweltdiagnostik GmbH. Ruthenium-106 Augenapplikatoren/Ophthalmic Applicators. p. 30

  4. Bekkering GE, Rutjes AWS, Vassov VV et al (2009) The effectiveness and safety of proton radiation therapy of indications of the eye. Strahlenther Onkol 185:211–221

    Article  PubMed  Google Scholar 

  5. Brady LW, Hernandez JC (1992) Brachytherapy of choroidal melanomas. Strahlenther Onkol 168:61–65

    PubMed  CAS  Google Scholar 

  6. Brualla L, Flühs D, Wittig A et al (2011) Monte Carlo-estimated dose distributions and dose volume histograms from Ru/Rh-106 plaques on a computerized tomography of the eye. Strahlenther Onkol 187(S1):104

    Article  Google Scholar 

  7. Brualla L, Palanco-Zamora R, Steuhl KP et al (2011) Monte Carlo simulations applied to conjunctival lymphoma radiotherapy treatment. Strahlenther Onkol 187:492–498

    Article  PubMed  Google Scholar 

  8. Brualla L, Palanco-Zamora R, Wittig A et al (2009) Comparison between PENELOPE and eMC in small electron fields. Phys Med Biol 54:5469–5481

    Article  PubMed  CAS  Google Scholar 

  9. Brualla L, Sempau J, Sauerwein W (2012) Comment on Monte Carlo calculation of the dose distributions of two 106Ru eye applicators. Radiother Oncol 104:267–268 (Radiother Oncol 49 (1998) 191–196)

    Article  PubMed  Google Scholar 

  10. Brualla L, Zaragoza FJ, Sempau J et al (2010) Optimisation of the treatment technique used for the conjunctival lymphoma by means of Monte Carlo simulations and dose volume histograms on high resolution CT images. Strahlenther Onkol 186 (S1):77

    Google Scholar 

  11. Chetty IJ, Curran B, Cygler JE et al (2007) Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 34:4818–4853

    Article  PubMed  Google Scholar 

  12. Cross W, Hokkanen J, Järvinen H, Mourtada F (2001) Calculation of beta-ray dose distributions from ophthalmic applicators and comparison with measurements in a model eye. Med Phys 28:1385–1396

    Article  PubMed  CAS  Google Scholar 

  13. Das IJ, Ding GX, Ahnesjö A (2008) Small fields: Nonequilibrium radiation dosimetry. Med Phys 35:206–215

    Article  PubMed  Google Scholar 

  14. Fernández-Varea JM, Carrasco P, Panettieri V, Brualla L (2007) Monte Carlo based water/medium stopping-power ratios for various ICRP and ICRU tissues. Phys Med Biol 52:6475–6483

    Article  PubMed  Google Scholar 

  15. Firestone RB, Shirley VS (1978) Table of Isotopes, 7th ed. Wiley-Interscience, New York

  16. Flühs D, Bambynek M, Heintz M et al (1997) Dosimetry and design of radioactive eye plaques. Front Radiat Ther Oncol 30:26–38

    PubMed  Google Scholar 

  17. Fuss MC, Muñoz A, Oller JC et al (2011) Energy deposition by a 106Ru/106Rh eye applicator simulated using LEPTS, a low-energy particle track simulation. Appl Radiat Isotopes 69:1198–1204

    Article  CAS  Google Scholar 

  18. García-Toraño E, Grau Malonda A (1985) EFFY, a new program to compute the counting efficiency of beta particles in liquid scintillators. Comput Phys Commun 36:307–312

    Article  Google Scholar 

  19. ICRU (2004) Dosimetry of beta rays and low-energy photons for brachytherapy with sealed sources (Report 72). J ICRU 4(2)

  20. Kaulich TW, Zurheide J, Haug T et al (2004) On the actual state of industrial quality assurance procedures with regard to 106Ru ophthalmic plaques. Strahlenther Onkol 180:358–364

    Article  PubMed  Google Scholar 

  21. Kaulich TW, Zurheide J, Haug T et al (2005) Clinical quality assurance for 106Ru ophthalmic applicators. Radiother Oncol 76:86–92

    Article  PubMed  Google Scholar 

  22. Lommatzsch P (1986) Results after β-irradiation (106Ru/106Rh) of choroidal melanomas: 20 years’ experience. Brit J Ophthalmol 70:844–8451

    Article  CAS  Google Scholar 

  23. Lommatzsch P (1977) Treatment of choroidal melanomas with 106Ru/106Rh beta-ray applicators. Surv Ophthalmol 19:85–100

    Google Scholar 

  24. Lommatzsch P, Vollmar R (1966) Ein neuer Weg zur konservativen Therapie intraokularer Tumoren mit Betastrahlen (Ruthenium 106) unter Erhaltung der Sehfähigkeit. Klin Monatsbl Augenheilkd 148:682–699

    PubMed  CAS  Google Scholar 

  25. Mossbock G, Rauscher T, Winkler P et al (2007) Impact of dose rate on clinical course in uveal melanoma after brachytherapy with ruthenium-106. Strahlenther Onkol 183:571–575

    Article  PubMed  Google Scholar 

  26. Mourtada F, Koch N, Newhauser W (2005) 106Ru/106Rh Plaque and proton radiotherapy for ocular melanoma: a comparative dosimetric study. Radiat Prot Dosimet 116:454–460

    Article  CAS  Google Scholar 

  27. Reynaert N, Marck SC van der, Schaart DR et al (2007) Monte Carlo treatment planning for photon and electron beams. Rad Phys Chem 76:643–686

    Article  CAS  Google Scholar 

  28. Salvat F, Fernández-Varea JM, Sempau J (2009) PENELOPE 2008: a code system for Monte Carlo simulation of electron and photon transport. OECD Nuclear Energy Agency, Issy-les-Moulineaux (Available in PDF format at http://www.nea.fr)

  29. Sánchez-Reyes A, Tello J, Guix B, Salvat F (1998) Monte Carlo calculation of the dose distributions of two 106Ru eye applicators. Radiother Oncol 49:191–196

    Article  PubMed  Google Scholar 

  30. Schueler AO, Flühs D, Anastassiou G et al (2006) β-Ray brachytherapy with 106Ru plaques for retinoblastoma. Int J Rad Oncol Phys 65:1212–1221

    Article  Google Scholar 

  31. Schueler AO, Flühs D, Anastassiou G et al (2006) Beta-ray brachytherapy of retinoblastoma: feasibility of a new small-sized Ruthenium-106 plaque. Ophthalmic Res 38:8–12

    Article  PubMed  Google Scholar 

  32. Sempau J, Acosta E, Baró J et al (1997) An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Meth B 132:377–390

    Article  CAS  Google Scholar 

  33. Sempau J, Badal A, Brualla L (2011) A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries—application to far-from-the-axis fields. Med Phys 38:5887–5895

    Article  PubMed  Google Scholar 

  34. Stannard C, Maree G, Munro R et al (2011) Iodine-125 orbital brachytherapy with a prosthetic implant in situ. Strahlenther Onkol 187:322–327

    Article  PubMed  Google Scholar 

  35. Taccini G, Cavagnetto F, Coscia G et al (1997) The determination of dose characteristics of ruthenium ophthalmic applicators using radiochromic film. Med Phys 24:2034–2037

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Theodor Kaulich for the experimental data related to the CCB plaque. L.B. acknowledges financial support from the Deutsche Forschungsgemeinschaft project BR 4043/1-1. J.S. also acknowledges partial financial support from the Spanish Ministerio de Economía y Competitividad (Project no. FIS2012-38480), from the Spanish Ministerio de Ciencia e Innovación (project no. FPA2009-14091-C02-01), and from the Spanish Networking Research Center CIBER-BBN.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Brualla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brualla, L., Sempau, J., Zaragoza, F. et al. Accurate estimation of dose distributions inside an eye irradiated with 106Ru plaques. Strahlenther Onkol 189, 68–73 (2013). https://doi.org/10.1007/s00066-012-0245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0245-6

Keywords

Schlüsselwörter

Navigation