Skip to main content

Advertisement

Log in

Influence of osteopontin silencing on survival and migration of lung cancer cells

Einfluss der Osteopontinhemmung auf Überleben und Migration von Lungenkarzinomzellen

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

Osteopontin (OPN) is a multifunctional protein overexpressed in many cancers and is involved in tumor progression and metastasis. In lung cancer, elevated OPN expression is associated with an unfavorable prognosis. Therefore, inhibition of OPN is an attractive approach for improving survival.

Materials and methods

We used siRNA to specifically downregulate OPN expression in A549 lung cancer cells. OPN silencing was evaluated with quantitative reverse transcriptase polymerase chain reaction (RT-PCR) for mRNA levels and with Western blotting for protein levels. Effects on cell proliferation were measured by cell counting. The influence on tumor cell migration was detected using a modified Boyden chamber. Changes in cell cycle distribution were assessed by flow cytometry. Using the colony formation assay, we determined changes in radiosensitivity.

Results

A specific and effective downregulation of OPN expression was detected in both RNA and protein levels. Cell proliferation and cell migration were significantly reduced by OPN silencing after 24 h and the effects were further increased by the addition of irradiation. The cell cycle distribution showed a reduction in S phase and an increase in cells arrested in both G0/G1 and G2/M phases. Specific enhancement of radiosensitivity was clearly shown after OPN knockdown.

Conclusion

The combination of OPN silencing and irradiation showed a synergistic effect leading to reduced cell survival.

Zusammenfassung

Hintergrund und Ziel

Osteopontin (OPN) ist ein multifunktionelles Protein, welches in vielen Tumoren überexprimiert wird und an zahlreichen Schritten der Tumorprogression und Metastasierung beteiligt ist. Beim Bronchialkarzinom ist eine gesteigerte Osteopontinexpression mit einer schlechteren Prognose assoziiert. Daher stellt die Hemmung der Osteopontinexpression einen vielversprechenden Ansatz zur Verbesserung des Überlebens dar.

Material und Methoden

In der A549-Bronchialkarzinom-Zelllinie wurden zur Osteopontinhemmung spezifische siRNA eingesetzt. Die Expressionshemmung wurde auf RNA-Ebene mittels quantitativer RT-PCR und auf Proteinebene mithilfe der Western-Blot-Analyse ausgewertet. Auswirkungen auf die Zellproliferation wurden durch Zellzählung ermittelt. Eine Beeinflussung der Zellmigration wurde mittels modifizierter Boyden-Kammer bestimmt. Mit der Durchflusszytometrie ermittelten wir Änderungen im Zellzyklus. Eine Änderung der Strahlensensitivität wurde durch das klonogene Zellüberleben im Koloniebildungstest erfasst.

Ergebnisse

Eine spezifische und effektive Downregulation der Osteopontinexpression wurde sowohl auf RNA- als auch auf Proteinebene gezeigt. Hierdurch verringerten sich nach 24 h die Zellproliferation und die Migration signifikant, und durch die zusätzliche Bestrahlung wurden diese Effekte weiter verstärkt. In der Zellzyklusverteilung zeigte sich eine Abnahme in der S-Phase und eine Zunahme der Zellen in der G0/G1- und G2/M-Phase. Schließlich wurde nach OPN-Hemmung eine spezifische Verstärkung der Radiosensitivität im Kolonietest nachgewiesen.

Schlussfolgerung

Die Kombination der OPN-Downregulation mit einer Strahlentherapie zeigte eine synergistische Wirkung, die zu einem verringerten Zellüberleben führte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bache M, Reddemann R, Said HM et al (2006) Immunohistochemical detection of osteopontin in advanced head-and-neck cancer: prognostic role and correlation with oxygen electrode measurements, hypoxia-inducible-factor-1alpha-related markers, and hemoglobin levels. Int J Radiat Oncol Biol Phys 66:1481–1487

    Article  PubMed  CAS  Google Scholar 

  2. Bayer C, Vaupel P (2012) Acute versus chronic hypoxia in tumors: controversial data concerning time frames and biological consequences. Strahlenther Onkol 188:616–627

    Article  PubMed  CAS  Google Scholar 

  3. Bellahcene A, Castronovo V, Ogbureke KU et al (2008) Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nature reviews. Cancer 8:212–226

    PubMed  CAS  Google Scholar 

  4. Blasberg JD, Pass HI, Goparaju CM et al (2010) Reduction of elevated plasma osteopontin levels with resection of non-small-cell lung cancer. J Clin Oncol 28:936–941

    Article  PubMed  CAS  Google Scholar 

  5. Boldrini L, Donati V, Dell’Omodarme M et al (2005) Prognostic significance of osteopontin expression in early-stage non-small-cell lung cancer. Br J Cancer 93:453–457

    Article  PubMed  CAS  Google Scholar 

  6. Chambers AF, Wilson SM, Kerkvliet N et al (1996) Osteopontin expression in lung cancer. Lung Cancer 15:311–323

    Article  PubMed  CAS  Google Scholar 

  7. Chang SH, Minai-Tehrani A, Shin JY et al (2012) Beclin1-induced autophagy abrogates radioresistance of lung cancer cells by suppressing osteopontin. J Radiat Res

  8. Chong HC, Tan CK, Huang RL et al (2012) Matricellular proteins: a sticky affair with cancers. J Oncol 351089

  9. Courter D, Cao H, Kwok S et al (2010) The RGD domain of human osteopontin promotes tumor growth and metastasis through activation of survival pathways. PloS one 5:e9633

    Article  PubMed  Google Scholar 

  10. Djuzenova C, Muhl B, Schakowski R et al (2004) Normal expression of DNA repair proteins, hMre11, Rad50 and Rad51 but protracted formation of Rad50 containing foci in X-irradiated skin fibroblasts from radiosensitive cancer patients. Br J Cancer 90:2356–2363

    PubMed  CAS  Google Scholar 

  11. Fong YC, Liu SC, Huang CY et al (2009) Osteopontin increases lung cancer cells migration via activation of the alphavbeta3 integrin/FAK/Akt and NF-kappaB-dependent pathway. Lung Cancer 64:263–270

    Article  PubMed  Google Scholar 

  12. Goparaju CM, Pass HI, Blasberg JD et al (2010) Functional heterogeneity of osteopontin isoforms in non-small cell lung cancer. J Thorac Oncol 5:1516–1523

    Article  PubMed  Google Scholar 

  13. Hahnel A, Wichmann H, Kappler M et al (2010) Effects of osteopontin inhibition on radiosensitivity of MDA-MB-231 breast cancer cells. Radiat Oncol 5:82

    Article  PubMed  Google Scholar 

  14. Isa S, Kawaguchi T, Teramukai S et al (2009) Serum osteopontin levels are highly prognostic for survival in advanced non-small cell lung cancer: results from JMTO LC 0004. J Thorac Oncol 4:1104–1110

    Article  PubMed  Google Scholar 

  15. Le QT, Chen E, Salim A et al (2006) An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res 12:1507–1514

    Article  PubMed  CAS  Google Scholar 

  16. Lukacova S, Overgaard J, Alsner J et al (2006) Strain and tumour specific variations in the effect of hypoxia on osteopontin levels in experimental models. Radiother Oncol 80:165–171

    Article  PubMed  CAS  Google Scholar 

  17. Mack PC, Redman MW, Chansky K et al (2008) Lower osteopontin plasma levels are associated with superior outcomes in advanced non-small-cell lung cancer patients receiving platinum-based chemotherapy: SWOG Study S0003. J Clin Oncol 26:4771–4776

    Article  PubMed  CAS  Google Scholar 

  18. Maftei CA, Bayer C, Shi K et al (2011) Quantitative assessment of hypoxia subtypes in microcirculatory supply units of malignant tumors using (immuno-)fluorescence techniques. Strahlenther Onkol 187:260–266

    Article  PubMed  Google Scholar 

  19. Overgaard J, Eriksen JG, Nordsmark M et al (2005) Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol 6:757–764

    Article  PubMed  CAS  Google Scholar 

  20. Said HM, Hagemann C, Staab A et al (2007) Expression patterns of the hypoxia-related genes osteopontin, CA9, erythropoietin, VEGF and HIF-1alpha in human glioma in vitro and in vivo. Radiother Oncol 83:398–405

    Article  PubMed  CAS  Google Scholar 

  21. Said HM, Katzer A, Flentje M et al (2005) Response of the plasma hypoxia marker osteopontin to in vitro hypoxia in human tumor cells. Radiother Oncol 76:200–205

    Article  PubMed  CAS  Google Scholar 

  22. Staab A, Fleischer M, Loeffler J et al (2011) Small interfering RNA targeting HIF-1alpha reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro. Strahlenther Onkol 187:252–259

    Article  PubMed  Google Scholar 

  23. Wu J, Pungaliya P, Kraynov E et al (2012) Identification and quantification of osteopontin splice variants in the plasma of lung cancer patients using immunoaffinity capture and targeted mass spectrometry. Biomarkers 17:125–133

    Article  PubMed  CAS  Google Scholar 

  24. Yang L, Zhao W, Zuo WS et al (2012) Silencing of osteopontin promotes the radiosensitivity of breast cancer cells by reducing the expression of hypoxia inducible factor 1 and vascular endothelial growth factor. Chin Med J (Engl) 125:293–299

    Google Scholar 

  25. Zhao B, Sun T, Meng F et al (2011) Osteopontin as a potential biomarker of proliferation and invasiveness for lung cancer. J Cancer Res Clin Oncol 137:1061–1070

    Article  PubMed  CAS  Google Scholar 

  26. Zhu Y, Denhardt DT, Cao H et al (2005) Hypoxia upregulates osteopontin expression in NIH-3T3 cells via a Ras-activated enhancer. Oncogene 24:6555–6563

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Matthias Kappler for advice with osteopontin detection and Natalia Niewidok and Sebastian Kuger for critical discussion.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Polat MD.

Additional information

B. Polat and G. Wohlleben contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polat, B., Wohlleben, G., Katzer, A. et al. Influence of osteopontin silencing on survival and migration of lung cancer cells. Strahlenther Onkol 189, 62–67 (2013). https://doi.org/10.1007/s00066-012-0238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0238-5

Keywords

Schlüsselwörter

Navigation