Skip to main content

Advertisement

Log in

Small interfering RNA targeting HIF-1α reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

Hypoxia-inducible-Factor-1α-Small-Interfering-RNA inhibiert die hypoxische Akkumulation von HIF-1 α und erhöht die Strahlensensitivität von HT-1080-Fibrosarkomzellen in vitro

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Background:

Hypoxia inducible factor-1 has been identified as a potential target to overcome hypoxia-induced radioresistance The aim of the present study was to investigate whether selective HIF-1 inhibition via small interfering RNA (siRNA) targeting hypoxia-inducible factor 1α (HIF-1α) affects hypoxia-induced radioresistance in HT 1080 human fibrosarcoma cells.

Material and Methods:

HIF-1α expression in HT 1080 human fibrosarcoma cells in vitro was silenced using HIF-1α siRNA sequence primers. Quantitative real-time polymerase chain reaction assay was performed to quantify the mRNA expression of HIF-1α. HIF-1α protein levels were studied by Western blotting at 20% (air) or after 12 hours at 0.1% O2 (hypoxia). Cells were assayed for clonogenic survival after irradiation with 2, 5, or 10 Gy, under normoxic or hypoxic conditions in the presence of HIF-1α-targeted or control siRNA sequences. A modified oxygen enhancement ratio (OER´) was calculated as the ratio of the doses to achieve the same survival at 0.1% O2 as at ambient oxygen tensions. OER´ was obtained at cell survival levels of 50%, 37%, and 10%.

Results:

HIF-1α-targeted siRNA enhanced radiation treatment efficacy under severely hypoxic conditions compared to tumor cells treated with scrambled control siRNA. OER was reduced on all survival levels after treatment with HIF-1α-targeted siRNA, suggesting that inhibition of HIF-1 activation by using HIF-1α-targeted siRNA increases radiosensitivity of hypoxic tumor cells in vitro.

Conclusion:

Inhibition of HIF-1 activation by using HIF-1α-targeted siRNA clearly acts synergistically with radiotherapy and increase radiosensitivity of hypoxic cells in vitro.

Hintergrund und Ziel:

Hypoxia-inducible Factor-1 (HIF-1) wurde als potentielles therapeutisches Target identifiziert. Ziel der Arbeit war es, zu untersuchen, ob die selektive HIF-1-Inhibition mittels Small Interfering RNA (siRNA) gegen HIF-1α die Strahlensensibilität von hypoxischen HT-1080-Zellen beeinflussen kann.

Material und Methodik:

Die HIF-1α-Expression in humanen HT-1080-Fibrosarkomzellen wurde mittels RNA-Interferenz nach Transfektion der Zellen mit siRNA unter hypoxischen Bedingungen (0,1%, O2, 12 h), bzw. Normoxie (20% O2) in vitro inhibiert. Die HIF-1α-Genexpression wurde mit quantitativer Realtime-Polymerasekettenreaktion (qRT-PCR), das HIF-1α-Protein mittels Western Blot quantifiziert. Das klonogene Überleben wurde nach Bestrahlung unter Hypoxie und Normoxie bestimmt und daraus eine Oxygen Enhancement Ratio (OER´) bei den Überlebensniveaus 50%, 37% and 10% berechnet.

Resultate:

HIF-1α-siRNA erhöht die Strahlensensibilität unter hypoxischen Bedingen, verglichen mit HT-1080-Zellen, die mit Kontroll-siRNA behandelt wurden. Die OER` war bei allen Überlebensniveaus reduziert.

Schlussfolgerung:

Eine selektive Inhibition der HIF-1-Aktivierung durch HIF-1α-siRNA wirkt synergistisch mit einer Bestrahlung und erhöht die Strahlensensitivität hypoxischer Tumorzellen in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aebersold DM, Burri P, Beer KT, et al. Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 2001;61:2911–6.

    PubMed  CAS  Google Scholar 

  2. Bache M, Kappler M, Said HM, et al. Detection and specific targeting of hypoxic regions within solid tumors: current preclinical and clinical strategies. Curr Med Chem 2008;15:322–38.

    Article  PubMed  CAS  Google Scholar 

  3. Balducci M, Apicella G, Manfrida S, et al. Single-arm phase II study of conformal radiation therapy and temozolomide plus fractionated stereotactic conformal boost in high-grade gliomas: final report. Strahlenther Onkol 2010;186:558–64.

    Article  PubMed  Google Scholar 

  4. Comerford KM, Cummins EP, Taylor CT. c-Jun NH2-Terminal kinase activation contributes to hypoxia-inducible factor 1a-dependent Pglycoprotein expression in hypoxia. Cancer Res 2004;15:9057–61.

    Article  Google Scholar 

  5. Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 2002;15:3387–94.

    Google Scholar 

  6. Dellas K, Bache M, Pigorsch SU, et al. Prognostic impact of HIF-1alpha expression in patients with definitive radiotherapy for cervical cancer. Strahlenther Onkol 2008;184:169–74.

    Article  PubMed  Google Scholar 

  7. Epstein AC, Gleadle JM, McNeill LA, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001;107:43–54.

    Article  PubMed  CAS  Google Scholar 

  8. Gillespie DL, Whang K, Ragel BT, et al. Silencing of hypoxia-inducible factor-1alpha by RNA interference attenuates human glioma cell growth in vivo. Clin Cancer Res 2007;13:2441–8.

    Article  PubMed  CAS  Google Scholar 

  9. Griffiths EA, Pritchard SA, Valentine HR, et al. Hypoxia-inducible factor-1alpha expression in the gastric carcinogenesis sequence and its prognostic role in gastric and gastro-oesophageal adenocarcinomas. Br J Cancer 2007; 96:95–103.

    Article  PubMed  CAS  Google Scholar 

  10. Hall, EJ. Radiobiology for the radiologist. 4. ed. Philadelphia: Lippincott; 1994

    Google Scholar 

  11. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nature Reviews Cancer 2002;2:38–47.

    Article  PubMed  CAS  Google Scholar 

  12. Ivan M, Kondo K, Yang H, et al. HIF alpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001;292:464–8.

    Article  PubMed  CAS  Google Scholar 

  13. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001;292:468–72.

    Article  PubMed  CAS  Google Scholar 

  14. Kappler, Taubert H, Holzhausen HJ, et al. Immunohistochemical detection of HIF-1alpha and CAIX in advanced head-and-neck cancer. Prognostic role and correlation with tumor markers and tumor oxygenation parameters. Strahlenther Onkol 2008;184:393–9.

    Article  PubMed  Google Scholar 

  15. Khan ZA, Chakrabarti S. Cellular signaling and potential new treatment targets in diabetic retinopathy. Experimental Diabetes Research 2007;2007:31867.

    Article  PubMed  Google Scholar 

  16. Kung AL, Zabludoff SD, France DS, et al. Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell 2004;6:33–43.

    Article  PubMed  CAS  Google Scholar 

  17. Lau SK, Boutros PC, Pintilie M, et al. Three-gene prognostic classifier for early-stage non small-cell lung cancer. J Clin Oncol 2007;25:5562-9.

    Google Scholar 

  18. Lövey J, Kenessey I, Raso E, et al. Human recombinant erythropoietin-alpha increases the efficacy of irradiation in preclinical model. Magy Onkol 2007;51:53–61.

    PubMed  Google Scholar 

  19. Malhotra R, Tyson DW, Rosevear HM, et al. Hypoxia-inducible factor-1alpha is a critical mediator of hypoxia induced apoptosis in cardiac H9c2 and kidney epithelial HK-2 cells. BMC Cardiovascular Disorders 2008;8:9.

    Article  PubMed  Google Scholar 

  20. Matsuyama T, Nakanishi K, Hayashi T, et al. Expression of hypoxia-inducible factor-1alpha in esophageal squamous cell carcinoma. Cancer Sci 2005;96:176–82.

    Article  PubMed  CAS  Google Scholar 

  21. Moeller BJ, Dewhirst MW. HIF-1 and tumour radiosensitivity. Br J Cancer 2006;95:1–5.

    Article  PubMed  CAS  Google Scholar 

  22. Semenza GL. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov. Today 2007;12:853–9.

    Article  PubMed  CAS  Google Scholar 

  23. Shibata T, Giaccia AJ, Brown JM. Development of a hypoxia-responsive vector for tumor-specific gene therapy. Gene Ther 2000;7:493–8.

    Article  PubMed  CAS  Google Scholar 

  24. Sorensen BS, Alsner J, Overgaard J et al. Hypoxia induced expression of endogenous markers in vitro is highly influenced by pH. Radiother Oncol 2007;83:362–6.

    Article  PubMed  Google Scholar 

  25. Staab A, Loeffler J, Said HM, et al. Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells. BMC Cancer 2007;7:213.

    Article  PubMed  Google Scholar 

  26. Staab A, Loffler J, Said HM, Katzer A, et al. Modulation of glucose metabolism inhibits hypoxic accumulation of Hypoxia-inducible factor-1a (HIF-1alpha). Strahlenther Onkol 2007;183:366–73.

    Article  PubMed  Google Scholar 

  27. Takahashi Y, Nishikawa M, Takakura Y. Inhibition of tumor cell growth in the liver by RNA interference-mediated suppression of HIF-1alpha expression in tumor cells and hepatocytes. Gene Ther 2008,15:572–82.

    Article  PubMed  CAS  Google Scholar 

  28. Tinkl D, Grabenbauer GG, Golcher H, et al. Downstaging of pancreatic carcinoma after neoadjuvant chemoradiation. Strahlenther Onkol 2009;185:557–66.

    Article  PubMed  Google Scholar 

  29. Trastour C, Benizri E, Ettore F, et al. HIF-1alpha and CA IX staining in invasive breast carcinomas: prognosis and treatment outcome. Int J Cancer 2007;120:1451–8.

    Article  PubMed  CAS  Google Scholar 

  30. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 2007;26:225–39.

    Article  PubMed  CAS  Google Scholar 

  31. Vordermark D, Katzer A, Baier K, et al. M. Cell type-specific association of hypoxia-inducible factor-1 alpha (HIF-1 alpha) protein accumulation and radiobiologic tumor hypoxia. Int J Radiat Oncol Biol Phys 2004;58:1242–50.

    Article  PubMed  CAS  Google Scholar 

  32. Vordermark D, Shibata T, Brown JM. Green fluorescent protein is a suitable reporter of tumor hypoxia despite an oxygen requirement for chromophore formation. Neoplasia 2001;3:527–34.

    Article  PubMed  CAS  Google Scholar 

  33. Vordermark D, Brown JM. Endogenous markers of tumor hypoxia predictors of clinical radiation resistance? Strahlenther Onkol 2003;179:801–11.

    Article  PubMed  Google Scholar 

  34. Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995;92:5510–4.

    Article  PubMed  CAS  Google Scholar 

  35. Welsh S, Williams R, Kirkpatrick L, et al. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol Cancer Ther 2004;3:233–44.

    PubMed  CAS  Google Scholar 

  36. Wolf M, Zehentmayr F, Niyazi M, et al. Long-term outcome of mitomycin C- and 5-FU-based primary radiochemotherapy for esophageal cancer. Strahlenther Onkol 2010;186:374–81.

    Article  PubMed  Google Scholar 

  37. Williams KJ, Telfer BA, Xenaki D, et al. Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1. Radiother Oncol 2005;75:89–98.

    Article  PubMed  CAS  Google Scholar 

  38. Wurstbauer K, Weise H, Deutschmann H, et al. Non-small cell lung cancer in stages I–IIIB: long-term results of definitive radiotherapy with doses. 80 Gy in standard fractionation. Strahlenther Onkol 2010;186:551–7.

    Article  PubMed  Google Scholar 

  39. Yang L, Kang WK. The effect of HIF-α siRNA on growth and chemosensitivity of Mia-paca cell line. Yonsei Med J 2008;49:295–300.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Staab MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staab, A., Fleischer, M., Loeffler, J. et al. Small interfering RNA targeting HIF-1α reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro. Strahlenther Onkol 187, 252–259 (2011). https://doi.org/10.1007/s00066-011-2167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-011-2167-0

Key Words

Schlüsselwörter

Navigation