Skip to main content

Advertisement

Log in

Quantitative assessment of hypoxia subtypes in microcirculatory supply units of malignant tumors Using (immuno-)fluorescence techniques

Quantitative Erfassung verschiedener Hypoxieformen in mikrozirkulatorischen Versorgungseinheiten maligner Tumoren mit Hilfe von (Immun-)Fluoreszenztechniken

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and Purpose:

Hypoxia is a characteristic of tumors, is known to increase aggressiveness, and causes treatment re-sistance. Traditional classification suggests two types of hypoxia: chronic and acute. Acute hypoxia is mostly caused by transient disruptions in perfusion, while chronic hypoxia is caused by diffusion limitations. This classification may be insufficient in terms of pathogenetic and pathophysiological mechanisms. Therefore, we quantified hypoxia subtypes in tumors based on (immuno-)fluorescent marker distribution patterns in microcirculatory supply units (MCSUs).

Material and Methods:

Cryosections from hSCC lines (SAS, FaDu, UT-SCC-5, UT-SCC-14, UT-SCC-15) were analyzed. Hypoxia was identified by pimonidazole, perfusion by Hoechst 33342, and endothelial cells by CD31. The following patterns were identified in vital tumor tissue: (1) normoxia: Hoechst 33342 fluorescence around microvessels, no pimonidazole, (2) chronic hypoxia: Hoechst 33342 fluorescence around microvessels, pimonidazole distant from microvessels, (3) acute hypoxia: no Hoechst 33342 fluorescence around microvessels, pimonidazole in immediate vicinity of microvessels, and (4) hypoxemic hypoxia: Hoechst 33342 fluorescence and pimonidazole directly around microvessels.

Results:

Quantitative assessment of MCSUs show predominance for normoxia in 4 out of 5 tumor lines (50.1–72.8%). Total hypoxia slightly prevails in UT-SCC-15 (56.9%). Chronic hypoxia is the dominant subtype (65.4–85.9% of total hypoxia). Acute hypoxia only accounts for 12.9–29.8% and hypoxemic hypoxia for 1.2–6.4% of total hypoxia. The fraction of perfused microvessels ranged from 82.5–96.6%.

Conclusion:

Chronic hypoxia is the prevailing subtype in MCSUs. Acute hypoxia and hypoxemic hypoxia account for only a small fraction. This approach enables assessment and recognition of different hypoxia subtypes including hypoxemic hypoxia and may facilitate methods to (clinically) identify and eliminate hypoxia.

Zusammenfassung

Hintergrund und Ziel:

Hypoxie ist ein Charakteristikum solider Tumoren, führt zur Tumorprogression und Therapieresistenz. Traditionell werden chronische und akute Hypoxie unterschieden. Erstere beruht vor allem auf Diffusionslimitierungen, letztere bevorzugt auf Perfusionsstörungen. Diese Klassifizierung reicht nicht aus, um pathogenetische und pathophysiologische Mechanismen weiter aufzuklären. Deshalb werden Hypoxiesubtypen in mikrozirkulatorischen Versorgungseinheiten (MCSUs) mit Hilfe von (Immun-)Fluoreszenztechniken identifiziert.

Material und Methoden:

Gefrierschnitte von xenotransplantierten menschlichen Plattenepithelkarzinomen (SAS, FaDu, UT-SCC-5, UT-SCC-14, UT-SCC-15) werden nach Pimonidazol-Färbung zur Hypoxiemarkierung, Hoechst-33342-Fluoreszenz zum Perfusionsnachweis und CD31-Gefäßdarstellung untersucht. Folgende Muster können in vitalem Gewebe nachgewiesen werden: (1) Normoxie: Hoechst-33342-Fluoreszenz um Gefäße, keine Pimonidazol-Anfärbung; (2) chronische Hypoxie: Hoechst-33342-Fluoreszenz in direkter Gefäßnähe, Pimonidazol in einer gewissen Distanz zu den Gefäßen; (3) akute Hypoxie: Hoechst-33342-Flu-oreszenz fehlt, Pimonidazol in unmittelbarer Gefäßnachbarschaft und (4) hypoxämische Hypoxie: Hoechst-33342-Fluoreszenz und Pimonidazol in direkter Gefäßnachbarschaft.

Ergebnisse:

Die Verteilungsmuster von Hoechst, Pimonidazol und CD31 in den MCSUs weisen darauf hin, dass in 4 der 5 Tumorlinien normoxische Areale überwiegen (50,1–72,8%). Lediglich UT-SCC-15-Tumoren sind überwiegend (56,9%) hypoxisch. Die Analyse der Hypoxiesubtypen zeigt, dass chronische Hypoxie eindeutig überwiegt (65,4–85,9% der Gesamthypoxie). Auf die akute Hypoxie entfallen lediglich 12,9–29,8% der Gesamthypoxie. Der Anteil der hypoxämischen Hypoxie ist am kleinsten (1,2–6,4% der Gesamthypoxie). Die Fraktion der perfundierten Gefäße beträgt 82,5–96,6%.

Schlussfolgerung:

Chronische Hypoxie herrscht in mikrozirkulatorischen Versorgungseinheiten der untersuchten Plattenepithelkarzinome vor. Akute und hypoxämische Hypoxie spielen nur eine untergeordnete Rolle. Der experimentelle Ansatz erlaubt erstmalig die Erfassung der hypoxämische Hypoxie im Tumorgewebe und ermöglicht eine Differenzierung verschiedener Hypoxiesubtypen. Die beschriebene Methode könnte die (quantitative) Detektion hypoxischer Areale und klinisch relevante Maßnahmen zur Verbesserung des Oxygenierungsstatus erleichtern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arteel GE, Thurman RG, Yates JM, et al. Evidence that hypoxia markers detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat liver. Br J Cancer 1995;72:889–95.

    Article  PubMed  CAS  Google Scholar 

  2. Bayer C, Maftei C-A, Astner ST, et al. Subtypes of chronic and acute hypoxia in tumors according to different causative mechanisms. Strahlenther Onkol 2010;186(Suppl 1):66.

    Google Scholar 

  3. Bayer C, Shi K, Astner ST, et al. Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int J Radiat Oncol Biol Phys 2011; in press.

  4. Bennewith KL, Durand RE. Quantifying transient hypoxia in human tumor xenografts by flow cytometry. Cancer Res 2004;64:6183–9.

    Article  PubMed  CAS  Google Scholar 

  5. Bley CR, Laluhova D, Roos M, et al. Correlation of pretreatment polarographically measured oxygen pressures with quantified contrast-enhanced power Doppler ultrasonography in spontaneous canine tumors and their impact on outcome after radiation therapy. Strahlenther Onkol 2009;185:756–62.

    Article  Google Scholar 

  6. Brown JM. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol 1979;52:650–6.

    Article  PubMed  CAS  Google Scholar 

  7. Chaplin DJ, Durand RE, Olive PL. Acute hypoxia in tumors: implications for modifiers of radiation effects. Int J Radiat Oncol Biol Phys 1986;12:1279–82.

    Article  PubMed  CAS  Google Scholar 

  8. Chaplin DJ, Olive PL, Durand RE. Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 1987;47:597–601.

    PubMed  CAS  Google Scholar 

  9. Dewhirst MW, Kimura H, Rehmus SW, et al. Microvascular studies on the origins of perfusion-limited hypoxia. Br J Cancer 1996;27(Suppl):S247–51.

    CAS  Google Scholar 

  10. Giaccia AJ. Hypoxic stress proteins: survival of the fittest. Semin Radiat Oncol 1996;6:46–58.

    Article  PubMed  Google Scholar 

  11. Goethals L, Debucquoy A, Perneel C, et al. Hypoxia in human colorectal adenocarcinoma: comparison between extrinsic and potential intrinsic hypoxia markers. Int J Radiat Oncol Biol Phys 2006;65:246–54.

    Article  PubMed  CAS  Google Scholar 

  12. Groebe K, Vaupel P. Evaluation of oxygen diffusion distances in human breast cancer xenografts using tumor-specific in vivo data: role of various mechanisms in the development of tumor hypoxia. Int J Radiat Oncol Biol Phys 1988;15:691–7.

    Article  PubMed  CAS  Google Scholar 

  13. Gulliksrud K, Vestvik IK, Galappathi K, et al. Detection of different hypoxic cell subpopulations in human melanoma xenografts by pimonidazole immunohistochemistry. Radiat Res 2008;170:638–50.

    Article  PubMed  CAS  Google Scholar 

  14. Hoeckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001;93:266–76.

    Article  Google Scholar 

  15. Kimura H, Braun RD, Ong ET, et al. Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 1996;56:5522–8.

    PubMed  CAS  Google Scholar 

  16. Kotas M, Schmitt P, Jakob PM. et al. Monitoring of tumor oxygenation changes in head-and-neck carcinoma patients breathing a hyperoxic hypercapnic gas mixture with a non-invasive MRI technique. Strahlenther Onkol 2009;185:19–26.

    Article  PubMed  Google Scholar 

  17. Ljungkvist AS, Bussink J, Rijken PF, et al. Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 2002;54:215–28.

    PubMed  Google Scholar 

  18. Maftei C-A, Bayer C, Astner ST, et al. Quantitative assessment of hypoxia subtypes in xenografted human tumors. Strahlenther Onkol 2010;186(Suppl 1):69.

    Google Scholar 

  19. Pires IM, Bencokova Z, Milani M, et al. Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability. Cancer Res 2010;70: 925–35.

    Article  PubMed  CAS  Google Scholar 

  20. Rofstad EK, Galappathi K, Mathiesen B, et al. Fluctuating and diffusion-limited hypoxia in hypoxia-induced metastasis. Clin Cancer Res 2007;13:1971–8.

    Article  PubMed  CAS  Google Scholar 

  21. Rofstad EK, Gaustad JV, Egeland TA, et al. Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination. Int J Cancer 2010;127:1535–46.

    PubMed  CAS  Google Scholar 

  22. Rofstad EK, Maseide K. Radiobiological and immunohistochemical assessment of hypoxia in human melanoma xenografts: acute and chronic hypoxia in individual tumours. Int J Radiat Biol 1999;75:1377–93.

    Article  PubMed  CAS  Google Scholar 

  23. Thomlinson RH, Gray I. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955;9:539–49.

    Article  PubMed  CAS  Google Scholar 

  24. Tufto I, Rofstad EK. Transient perfusion in human melanoma xenografts. Br J Cancer 1995;71:789–93.

    Article  PubMed  CAS  Google Scholar 

  25. Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist 2004;9(Suppl 5):10–7.

    Article  PubMed  CAS  Google Scholar 

  26. Vaupel P. Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 2008;13(Suppl 3):21–6.

    Article  PubMed  CAS  Google Scholar 

  27. Vaupel P. Pathophysiology of tumors. In: Molls M, Vaupel P, Nieder C, et al. (eds) The impact of tumor biology on cancer treatment and multidisciplinary strategies. Berlin-Heidelberg: Springer, 2009:51–92.

  28. Vaupel P. Physiological mechanisms of treatment resistance. In: Molls M, Vaupel P, Nieder C, et al. (eds) The impact of tumor biology on cancer treatment and multidisciplinary strategies. Berlin-Heidelberg: Springer, 2009:273–90.

    Chapter  Google Scholar 

  29. Vaupel P, Harrison L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 2004;9(Suppl 5):4–9.

    Article  PubMed  Google Scholar 

  30. Vaupel P, Mayer A. Effects of anaemia and hypoxia on tumor biology. In: Bokemeyer C, Ludwig H (eds) Anaemia in cancer. European school of oncology scientific updates. 2nd edn. Edinburgh-London: Elsevier, 2005:47–66.

    Google Scholar 

  31. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 2007;26:225–39.

    Article  PubMed  CAS  Google Scholar 

  32. Yaromina A, Krause M, Thames H, et al. Pre-treatment number of clonogenic cells and their radiosensitivity are major determinants of local tumour control after fractionated irradiation. Radiother Oncol 2007;83:304–10.

    Article  PubMed  CAS  Google Scholar 

  33. Yaromina A, Kroeber T, Meinzer A, et al. Exploratory study of the prognostic value of microenvironmental parameters during fractionared irradiation in human squamuous cell carcinoma xenografts. Int J Radiat Oncol Biol Phys 2011; in press.

  34. Yaromina A, Thames H, Zhou X, et al. Radiobiological hypoxia, histological parameters of tumour microenvironment and local tumour control after fractionated irradiation. Radiother Oncol 2010;96:116–22.

    Article  PubMed  Google Scholar 

  35. Yaromina A, Zips D, Thames HD, et al. Pimonidazole labelling and response to fractionated irradiation of five human squamous cell carcinoma (hSCC) lines in nude mice: The need for a multivariate approach in biomarker studies. Radiother Oncol 2006;81:122–9.

    Article  PubMed  CAS  Google Scholar 

  36. Zips D, Yaromina A, Schutze C, et al. Experimental evaluation of functional imaging for radiotherapy. Strahlenther Onkol 2007;183(Suppl 2):41–2.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Bayer Ph.D..

Additional information

Presented in part at the 16th Jahreskongress der Deutschen Gesellschaft für Radioonkologie (DEGRO), Magdeburg, Germany, 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maftei, CA., Bayer, C., Shi, K. et al. Quantitative assessment of hypoxia subtypes in microcirculatory supply units of malignant tumors Using (immuno-)fluorescence techniques. Strahlenther Onkol 187, 260–266 (2011). https://doi.org/10.1007/s00066-010-2216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-010-2216-0

Key Words

Schlüsselwörter

Navigation