Skip to main content
Log in

Phase-specific cone beam computed tomography reduces reconstructed volume loss of moving phantom

Phasenspezifisches Kegelstrahl-CT verringert rekonstruierten Volumenverlust eines Bewegungsphantoms

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The accurate volumetric calculation of moving targets/organs is required to use cone-beam computed tomography (CBCT) for replanning purposes. This study was aimed to correct the reconstructed volume losses of moving phantoms by phase-specific CBCT.

Materials and methods

Planning fan-beam CT (FBCT) of five hepatobiliary/gastrointestinal/pancreatic cancer patients were acquired under active breathing control and compared with free-breathing CBCT for kidney volumes. Three different-sized ball phantoms were scanned by FBCT and CBCT. Images were imported to a planning system to compare the reconstructed volumes. The phantoms were moved longitudinally on an oscillator with different amplitudes/frequencies. The phase-specific projections of CBCT for moving phantoms were selected for volume reconstruction.

Results

The differences in reconstructed volumes of static small, medium, large phantoms between FBCT and CBCT were − 6.7%, − 2.3%, and − 2.0%, respectively. With amplitudes of 7.5–20 mm and frequencies of 8–16 oscillations/min, volume losses on CBCT were comparable with FBCT in large moving phantoms (range 9.1–27.2%). Amplitudes were more subject to volume losses than frequencies. On phase-specific CBCT, volume losses were reduced to 2.3–6.5% by reconstruction using 2–3 projections at end/midoscillation phase.

Conclusion

Amplitude had more impact than frequency on volume losses of moving phantoms on CBCT. Phase-specific CBCT reduced volume losses.

Zusammenfassung

Ziel

Die genaue volumetrische Berechnung sich bewegender Ziele/Organe ist für die Verwendung einer Kegelstrahl-Computertomographie („cone beam“, CBCT) für Neuplanungszwecke erforderlich. Diese Studie hatte zum Ziel, den rekonstruierten Volumenverlust eines Bewegungsphantoms durch eine phasenspezifische CBCT zu korrigieren.

Material und Methodik

Eine Planungsfächerstrahl-CT („fan-beam“, FBCT) von 5 Hepatobiliär-/Gastrointestinal-/Pankreaskarzinompatienten wurde unter aktiver Atemkontrolle ausgeführt und jeweils mit einer CBCT unter freier Atmung hinsichtlich des Nierenvolumens verglichen. Drei Kugelphantome unterschiedlicher Größe wurden durch FBCT und CBCT gescannt. Die Bilder wurden in ein Planungssystem importiert und mit den rekonstruierten Volumen verglichen. Die Phantome waren longitudinal um einen Oszillator mit unterschiedlichen Amplituden/Frequenzen verschoben. Die Phasen-spezifischen Projektionen der CBCT für Bewegungsphantome wurden zur Volumenrekonstruktion ausgewählt.

Ergebnisse

Die Unterschiede rekonstruierter Volumen von statischen kleinen, mittleren und großen Phantomen zwischen FBCT und CBCT waren jeweils − 6,7%, − 2,3% und − 2,0%. Mit Amplituden von 7,5–20 mm und Frequenzen von 8–16 Oszillationen/Minute kam es in großen Bewegungsphantomen (Bandbreite: 9,1–27,2%) zu Volumenverlusten bei der CBCT im Vergleich mit der FBCT. Amplitudenveränderungen trugen eher zu Volumenverlusten bei als zu Veränderungen der Frequenzen. Bei Phasen-spezifischer CBCT wurden die Volumenverluste durch Rekonstruktion auf 2,3–6,5% reduziert, indem 2–3 Projektionen in der End-/Mittel-Oszillationsphase verwendet wurden.

Schlussfolgerung

Auf die Volumenverluste von Bewegungsphantomen hat die Amplitude bei der CBCT größeren Einfluss als die Frequenz. Eine Phasen-spezifische CBCT reduziert die Volumenverluste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bergner F, Berkus T, Oelhafen M et al (2010) An investigation of 4D cone-beam CT algorithms for slowly rotating scanners. Med Phys 37:5044–5053

    Article  PubMed  Google Scholar 

  2. Bergner F, Berkus T, Oelhafen M et al (2009) Autoadaptive phase-correlated (AAPC) reconstruction for 4D CBCT. Med Phys 36:5695–5706

    Article  PubMed  Google Scholar 

  3. Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 187:284–291

    Article  PubMed  Google Scholar 

  4. Chen CTY, Kung JH, Beaudette KP (2004) Artifacts in computed tomography scanning of moving objects. Semin Radiat Oncol 14:19–26

    Article  PubMed  Google Scholar 

  5. Delana A, Menegotti L, Bolner A et al (2009) Impact of residual setup error on parotid gland dose in intensity-modulated radiation therapy with or without planning organ-at-risk margin. Strahlenther Onkol 185:453–459

    Article  PubMed  Google Scholar 

  6. Graf R, Boehmer D, Budach V et al (2010) Residual translational and rotational errors after kV X-ray image-guided correction of prostate location using implanted fiducials. Strahlenther Onkol 186:544–550

    Article  PubMed  Google Scholar 

  7. Guckenberger M, Sweeney RA, Wilbert J et al (2008) Image-guided radiotherapy for liver cancer using respiratory- correlated computed tomography and cone-beam computed tomography. Int J Radiat Oncol Biol Phys 71:297–304

    Article  PubMed  Google Scholar 

  8. Hu C, Huang WT, Tsai CL et al (2011) Practically acquired and modified cone-beam computed tomography images for accurate dose calculation in head and neck cancer. Strahlenther Onkol 187:633–644

    Article  PubMed  Google Scholar 

  9. Jaffray DA, Siewerdsen JH (2000) Cone-beam computed tomography with a flat-panel imager: Initial performance characterization. Med Phys 27:1311–1323

    Article  PubMed  CAS  Google Scholar 

  10. Jaffray DA, Siewerdsen JH, Wong JW et al (2002) Flat panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53:1337–1349

    Article  PubMed  Google Scholar 

  11. Köhler FM, Boda-Heggemann J, Küpper B et al (2009) Phantom measurements to quantify the accuracy of a commercially available cone-beam CT gray-value matching algorithm using multiple fiducials. Strahlenther Onkol 185:49–55

    Article  PubMed  Google Scholar 

  12. Lee L, Le QT, Xing L (2008) Retrospective IMRT dose reconstruction based on cone-beam CT and MLC log-file. Int J Radiat Oncol Biol Phys 70:634–644

    Article  PubMed  Google Scholar 

  13. Leng S, Zambelli J, Tolakanahalli R et al (2008) Streaking artifacts reduction in four-dimensional cone-beam computed tomography. Med Phys 35:4649–4659

    Article  PubMed  Google Scholar 

  14. Letourneau D, Wong R, Moseley D et al (2007) Online planning and delivery technique for radiotherapy of spine metastases using cone-beam CT: image quality and system performance. Int J Radiat Oncol Biol Phys 67:1229–1237

    Article  PubMed  Google Scholar 

  15. Liebich J, Licher J, Scherf C et al (2011) Simple proposal for dosimetry with an Elekta iViewGT™ electronic portal imaging device (EPID) using commercial software modules. Strahlenther Onkol 187:316–321

    Article  PubMed  Google Scholar 

  16. Padmanaban S, Boopathy R, Kunijthapatham B et al (2010) A phantom study on the effects of target motion in non-gated-CBCT imaging. Australas Phys Eng Sci Med 33:59–64

    Article  PubMed  Google Scholar 

  17. Polat B, Guenther I, Wilbert J et al (2008) Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer. Strahlenther Onkol 184:668–673

    Article  PubMed  Google Scholar 

  18. Polat B, Wilbert J, Baier K et al (2007) Nonrigid patient setup errors in the head-and-neck region. Strahlenther Onkol 183:506–511

    Article  PubMed  Google Scholar 

  19. Siewerdsen JH, Jaffray DA (2001) Cone-beam computed tomography with a flat-panel imager: Magnitude and effects of x-ray scatter. Med Phys 28:220–231

    Article  PubMed  CAS  Google Scholar 

  20. Skrzynski W, Zielinska-Dabrowska S, Wachowicz M et al (2010) Computed tomography as a source of electron density information for radiation treatment planning. Strahlenther Onkol 186:327–333

    Article  PubMed  Google Scholar 

  21. Snoke JJ, Zijp L, Remeijer P et al (2005) Respiratory correlated cone beam CT. Med Phys 32:1176–1186

    Article  Google Scholar 

  22. Song WY, Kamath S, Ozawa S et al (2008) A dose comparison study between XVI® and OBI® CBCT systems. Med Phys 35:480–486

    Article  PubMed  Google Scholar 

  23. Stock M, Dörr W, Stromberger C et al (2010) Investigations on parotid gland recovery after IMRT in head and neck tumor patients. Strahlenther Onkol 186:665–671

    Article  PubMed  Google Scholar 

  24. Tsai CL, Wu JK, Wang CW et al (2009) Using cone-beam computed tomography to evaluate the impact of bladder filling status on target position in prostate radiotherapy. Strahlenther Onkol 185:588–595

    Article  PubMed  Google Scholar 

  25. Wiehle R, Koth HJ, Nanko N et al (2009) On the accuracy of isocenter verification with kV imaging in stereotactic radiosurgery. Strahlenther Onkol 185:325–330

    Article  PubMed  Google Scholar 

  26. Wu Q, Liang L, Yan D (2006) Application of dose compensation in image-guided radiotherapy of prostate cancer. Phys Med Biol 51:1405–1419

    Article  PubMed  Google Scholar 

  27. Xing L, Thorndyke B, Schreibmann E et al (2006) Overview of image guided radiation therapy. Med Dosim 31:91–112

    Article  PubMed  Google Scholar 

  28. Yan D, Lockman D, Brabbins D et al (2000) An off-line strategy for constructing a patient-specific planning target volume in adaptive treatment process for prostate cancer. Int J Radiat Oncol Biol Phys 48:289–302

    Article  PubMed  CAS  Google Scholar 

  29. Yang Y, Schreibmann E, Li T et al (2007) Evaluation of on-board kV cone-beam CT (CBCT)-based dose calculation. Phys Med Biol 52:685–705

    Article  PubMed  Google Scholar 

  30. Yoo S, Ying FF (2006) Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning. Int J Radiat Oncol Biol Phys 66:1553–1561

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Council, Execute Yuan, Taiwan, ROC (NSC 99-2628-B-002-071-MY3, 99-2627-B-002-008), and National Taiwan University Hospital grants NTUH 99S1361, 99N1425, 100S1552.

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.C.-H. Cheng M.D., M.S., Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, HL., Chen, WL., Hu, CC. et al. Phase-specific cone beam computed tomography reduces reconstructed volume loss of moving phantom. Strahlenther Onkol 188, 77–83 (2012). https://doi.org/10.1007/s00066-011-0012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-011-0012-0

Keywords

Schlüsselwörter

Navigation