Skip to main content

Advertisement

Log in

Helical Tomotherapy in Cervical Cancer Patients

Simultaneous Integrated Boost Concept: Technique and Acute Toxicity

Tomotherapie in der Therapie des Zervixkarzinoms. Simultanes integriertes Boostkonzept: Technik und Akuttoxizität

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose:

To evaluate the acute toxicity of simultaneous integrated boost (SIB) technique for dose escalation with helical tomotherapy (HT) in patients with locally advanced cervical cancer.

Patients and Methods:

20 patients (FIGO IB1 pN1-IIIB) underwent primary chemoradiation. Prior to chemoradiation, a laparoscopic pelvic and para-aortic lymphadenectomy was performed. A boost region was defined using titanium clips during staging for planning target volume (PTV-B). Patients were treated with five weekly fractions of 1.8 Gy to a total dose of 50.4 Gy to the tumor region and the pelvic (para-aortic) lymph node region (PTV-A), and five weekly fractions of 2.12 Gy to a total dose of 59.36 Gy to the PTV-B. Chemotherapy consisted of weekly cisplatin 40 mg/m2. 19 patients underwent brachytherapy. Dose-volume histograms were evaluated and acute gastrointestinal (GI), genitourinary (GU), and hematologic toxicity were documented (CTCAE v3.0).

Results:

Pelvic and para-aortic lymph node metastases were confirmed in nine and four patients, respectively. Five patients refused laparoscopic staging. The mean volume of PTV-A and PTV-B was 1,570 ± 404 cm3and 341 ± 125 cm3, respectively. The mean dose to the bladder, rectum, and small bowel was 47.85 Gy, 45.76 Gy, and 29.71 Gy, respectively. No grade 4/5 toxicity was observed. Grade 2/3 hematologic toxicity occurred in 50% of patients and 5% experienced grade 3 diarrhea. There was no grade 3 GU toxicity. 19 patients underwent curettage 6–9 weeks after chemoradiation without any evidence of tumor.

Conclusion:

The concept of SIB for dose escalation in patients with locally advanced cervical cancer is feasible with a low rate of acute toxicity. Whether dose escalation can translate into improved outcome will be assessed after a longer follow-up.

Zusammenfassung

Ziel:

Die Akuttoxizität der simultanen integrierten Boost-(SBI-)Technik der helikalen Tomotherapie (HT) in der primären Radiochemotherapie bei Patientinnen mit lokal fortgeschrittenen Zervixkarzinomen wurde untersucht.

Patienten und Methodik:

20 Patientinnen mit Zervixkarzinomen (FIGO IB1 pN1-IIIB) erhielten nach laparoskopischer transperitonealer pelviner und paraaortaler Lymphonodektomie eine primäre Radiochemotherapie. Unter Einschluss der pelvinen/paraaortalen Lymphknoten und der Tumorregion (PTV-A [Planungszielvolumen]) wurden die Patientinnen mit fünf wöchentlichen Einzeldosen von 1,8 Gy bis 50,4 Gy bestrahlt. Eine standardisierte Boostregion wurde mit Hilfe von Titanclips (PTV-B) markiert. Simultan betrug hier die Einzeldosis im PTV-B 2,12 Gy, die Gesamtdosis 59,36 Gy. Eine simultane Chemotherapie (40 mg/m2 Cisplatin wöchentlich) wurde appliziert. 19 Patientinnen erhielten zusätzlich eine intrazervikale Brachytherapie. Die Dosis-Volumen- Histogramme wurden ausgewertet und akute gastrointestinale (GI), urogenitale (GU) und hämatologische Toxizitäten dokumentiert (CTCAE v3.0).

Ergebnisse:

Pelvine und paraaortale Lymphknotenmetastasen wurden bei neun und vier Patientinnen gesichert. Fünf Patientinnen hatten das laparoskopische Staging abgelehnt. Das mittlere Volumen von PTV-A bzw. PTV-B betrug 1 570 ± 404 ml bzw. 341 ± 125 ml. Die mittlere Dosis von Blase, Rektum und Dünndarm lag bei 47,85 Gy, 45,76 Gy und 29,71 Gy. Es trat keine Grad- 4/5-Toxizität auf. Hämatologische Toxizität Grad 2/3 entwickelten 50 % der Patientinnen, 5 % wiesen eine Grad-3-Diarrhö auf. GU-Toxizität Grad 3 trat nicht auf. Die Abrasio 6–9 Wochen nach Therapieende zeigte bei 19 Patientinnen keinen vitalen Resttumor.

Schlussfolgerung:

Das SIB-Konzept ist mittels HT in der primären Radiochemotherapie durchführbar. Insgesamt sind niedrige Raten höhergradiger Toxizität beobachtet worden. Ob die Dosiserhöhung zu einer verbesserten lokalen Kontrolle führt, muss evaluiert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baglan KL, Frazier RC, Yan D, et al. The dose-volume relationship of acute small bowel toxicity from concurrent 5-FU based chemotherapy and radiation therapy for rectal cancer. Int J Radiat Oncol Biol Phys 2002;52: 176–83

    Article  PubMed  Google Scholar 

  2. Bodurka-Bevers D, Morris M, Eifel PJ, et al. Posttherapy surveillance of women with cervical cancer: an outcomes analysis. Gynecol Oncol 2000;78:187–93

    Article  CAS  PubMed  Google Scholar 

  3. Chatani M, Nose T, Masaki N, Inoue T. Adjuvant radiotherapy after radical hysterectomy of the cervical cancer. Strahlenther Onkol 1998;174:504–9

    Article  CAS  PubMed  Google Scholar 

  4. Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration. Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. J Clin Oncol 2008;26:5802–12

    Google Scholar 

  5. Chen MF, Tseng CJ, Tseng CC, et al. Clinical outcome in posthysterectomy cervical cancer patients treated with concurrent cisplatin and intensity- modulated pelvic radiotherapy: comparison with conventional radiotherapy. Int J Radiat Oncol Biol Phys 2007;67:1438–44

    Article  CAS  PubMed  Google Scholar 

  6. Chen MF, Tseng CJ, Tseng CC, et al. Adjuvant concurrent chemoradiotherapy with intensity modulated pelvic radiotherapy after surgery for high risk, early stage cervical cancer patents. J Cancer 2008;14:200–6

    Article  Google Scholar 

  7. Common Terminology Criteria for Adverse Events v3.0, CTCAE v3.0 (http:// ctep.cancer.gov)

  8. Diagnostik und Therapie des Zervixkarzinoms. Interdisziplinäre Leitlinie der Deutschen Krebsgesellschaft e.V. (DKG) und der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe (DGGG). Algorithmus 5 (http://www.awmf.de)

  9. Dimopoulos JC, Schirl G, Baldinger A, et al. MRI assessment of cervical cancer for adaptive radiotherapy. Strahlenther Onkol 2009;185:282–7

    Article  PubMed  Google Scholar 

  10. Engels B, de Ridder M, Tournel K, et al. Preoperative helical tomography and megavoltage computed tomography for rectal cancer: impact on the irradiated volume of small bowel. Int J Radiat Oncol Biol Phys 2009;74: 1476–80

    Article  PubMed  Google Scholar 

  11. Georg D, Georg D, Hillbrand M, et al. Assessment of improved organ at risk sparing for advanced cervix carcinoma utilizing precision radiotherapy techniques. Strahlenther Onkol 2008;184:586–91

    Article  PubMed  Google Scholar 

  12. Green JA, Kirwan JM, Tierney JF, et al. Survival and recurrence after concomitant chemotherapy an radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet 2001;358:781–6

    Article  CAS  PubMed  Google Scholar 

  13. http://www.rtog.org

  14. Hänsgen G, Kuhnt T, Pigorsch S, et al. Adjuvante simultane Radiochemotherapie nach operiertem Uteruszervixkarzinom in der High-Risk-Situation. Ergebnisse einer Pilotuntersuchung. Strahlenther Onkol 2002;178:71–7

    Article  PubMed  Google Scholar 

  15. Keys HM, Bundy BN, Stehman FB, et al. Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. N Engl J Med 1999;340:1154–61

    Article  CAS  PubMed  Google Scholar 

  16. Kirwan JM, Symonds P, Green JA, et al. A systematic review of acute and late toxicity of concomitant chemoradiation for cervical cancer. Radiother Oncol 2003;68:217–26

    Article  PubMed  Google Scholar 

  17. Lian J, Mackenzie M, Joseph K, et al. Assessment of extended field radiotherapy for stage IIIC endometrial cancer using three-dimensional conformal radiotherapy, intensity-modulated radiotherapy and helical tomotherapy. Int J Radiat Oncol Biol Phys 2008;70:935–43

    Article  PubMed  Google Scholar 

  18. Marnitz S, Köhler C, Roth C, et al. Is there a benefit of pretreatment laparoscopic transperitoneal surgical staging in patients with advanced cervical cancer? Gynecol Oncol 2005;99:536–44

    Article  PubMed  Google Scholar 

  19. Marnitz S, Köhler C, Roth C, et al. Stage-adjusted chemoradiation in cervical cancer after transperitoneal laparoscopic staging. Strahlenther Onkol 2007;183:473–8

    Article  PubMed  Google Scholar 

  20. Morris M, Eifel PJ, Lu J, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med 1999;340:1137–43

    Article  CAS  PubMed  Google Scholar 

  21. Mundt AJ, Roeske JC, Lujan AE, et al. Initial clinical experience with intensity- modulated whole pelvis radiation therapy in patients with gynaecologic malignancies. Gynecol Oncol 2001;82:446–56

    Google Scholar 

  22. Nagy V, Coza O, Ordeanu C, et al. Radiotherapy versus concurrent 5-day cisplatin and radiotherapy in locally advanced cervical carcinoma. Long-term results of a phase III randomized trial. Strahlenther Onkol 2009;185: 177–83

    Article  PubMed  Google Scholar 

  23. Perez CA, Grigsby PW, Locket MA, et al. Radiation therapy morbidity in carcinoma of the uterine cervix: dosimetric and clinical correlation. Int J Radiat Oncol Biol Phys 1999;44:855–66

    Article  CAS  PubMed  Google Scholar 

  24. Portelance L, Chao KS, Grigsby PW, et al. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum and bladder doses in patients with cervical cancer receiving pelvic and paraaortic radiation. Int J Radiat Biol Oncol Phys 2001;51:261–6

    Article  CAS  Google Scholar 

  25. Randall ME, Ibbott GS. Intensity-modulated radiation therapy (IMRT) for gynaecologic cancers. Pitfalls, hazards, and cautions to be considered. Semin Radiat Oncol 2006;16:138–43

    Article  PubMed  Google Scholar 

  26. Robertson JM, Lockman D, Yan D, et al. The doses-volume relationship of small bowel irradiation and acute grade 3 diarrhoea during chemoradiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys 2008;70:413–8

    Article  CAS  PubMed  Google Scholar 

  27. Roeske JC, Lujan A, Rotmensch J, et al. Intensity modulated whole pelvis therapy in patients with gynaecologic malignancies. Int J Radiat Oncol Biol Phys 2000;48:1613–21

    Article  CAS  PubMed  Google Scholar 

  28. Rose PG, Bundy BN, Watkins EB, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med 1999;340:1144–53

    Article  CAS  PubMed  Google Scholar 

  29. Sartori E, Pasinetti B, Carrara L, et al. Pattern of failure and value of follow- up procedures in endometrial and cervical cancer patients. Gynecol Oncol 2007;107:241–7

    Article  Google Scholar 

  30. Strauss HG, Kuhnt T, Laban C, et al. Chemoradiation in cervical cancer with cisplatin and high-dose rate brachytherapy combined with external beam radiotherapy. Results of a phase-II study. Strahlenther Onkol 2002;178:278–85

    Article  Google Scholar 

  31. Uterus-11-Studie der ARO/AGO. Prospektive, randomisierte und multizentrische Therapieoptimierungsstudie zur Untersuchung des Einflusses des operativen Stagings auf die Wahl der Therapie und die onkologischen Ergebnisse bei Patientinnen mit Zervixkarzinom der FIGO-Stadien IIB–IV (http://www.degro.org, http://www.ago.de)

  32. van’t Riet A, Mak AC, Moerland MA, et al. A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. Int J Radiat Oncol Biol Phys 1997;37:731–6

    Article  Google Scholar 

  33. Vandecasteele K, De Neve W, De Gersem W, et al. Intensity-modulated arc therapy with simultaneous integrated boost in the treatment of primary irresectable cervical cancer. Strahlenther Onkol 2009;185:799–807

    Article  PubMed  Google Scholar 

  34. Vorwerk H, Wagner D, Christiansen H, et al. An easy irradiation technique (partial half-beam) to reduce renal dose in radiotherapy of cervical cancer including paraaortic lymph nodes. Strahlenther Onkol 2008;184:473–7

    Article  PubMed  Google Scholar 

  35. Vorwerk H, Wagner D, Seitz B, et al. Overestimation of low-dose radiation in intensity-modulated radiotherapy with sliding-window technique. Strahlenther Onkol 2009;185:821–9

    Article  PubMed  Google Scholar 

  36. Whitney CW, Sause W, Bundy BN, et al. Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as adjunct to radiation therapy in stage IIB–IVA carcinoma of the cervix with negative para-aortic lymph nodes: a Gynecology Oncology Group and Southwest Oncology Group study. J Clin Oncol 1999;17:1339–48

    CAS  PubMed  Google Scholar 

  37. Zanagnolo V, Ming L, Gadducci A, et al. Surveillance procedures for patients with cervical carcinoma: a review of the literature. Int J Gynecol Cancer 2009;19:194–201

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Marnitz MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marnitz, S., Stromberger, C., Kawgan-Kagan, M. et al. Helical Tomotherapy in Cervical Cancer Patients. Strahlenther Onkol 186, 572–579 (2010). https://doi.org/10.1007/s00066-010-2121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-010-2121-6

Key Words

Schlüsselwörter

Navigation