Skip to main content
Log in

Künstliche Intelligenz in der Intensivmedizin

Artificial intelligence in intensive care medicine

  • Leitthema
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Die Integration von künstlicher Intelligenz (KI) in die Intensivmedizin zeigt in neuesten Studien besonders in den Bereichen der prädiktiven Analytik, der Früherkennung von Komplikationen und der Entwicklung von Entscheidungsunterstützungssystemen beachtliche Fortschritte. Die Hauptherausforderungen bestehen weiterhin in der Verfügbarkeit und Qualität der Daten, der Reduzierung von Verzerrungen und der Notwendigkeit erklärbarer Ergebnisse von Algorithmen und Modellen. Methoden zur Erklärung dieser Systeme sind essenziell, um Vertrauen, Verständnis und ethische Überlegungen bei Gesundheitsfachkräften und Patienten zu stärken. Eine fundierte Ausbildung des medizinischen Personals in KI-Prinzipien, Terminologie, ethischen Überlegungen und in der praktischen Anwendung ist für den erfolgreichen Einsatz von KI entscheidend. Die sorgfältige Bewertung der Auswirkungen von KI auf Patientenautonomie und Datenschutz ist unabdingbar für deren verantwortungsvolle Nutzung in der Intensivmedizin. Hierbei ist die Balance zwischen ethischen und praktischen Erwägungen zu wahren, um eine patientenzentrierte Versorgung bei gleichzeitiger Einhaltung von Datenschutzbestimmungen zu gewährleisten. Eine synergistische Zusammenarbeit zwischen Klinikern, KI-Ingenieuren und Regulierungsbehörden ist entscheidend, um das volle Potenzial der KI in der Intensivmedizin zu realisieren und ihre positive Wirkung auf die Patientenversorgung zu maximieren. Zukünftige Forschungs- und Entwicklungsanstrengungen sollten sich auf die Verbesserung von KI-Modellen für Echtzeitvorhersagen, die Steigerung der Genauigkeit und des Nutzens KI-basierter Closed-loop-Systeme sowie die Überwindung ethischer, technischer und regulatorischer Herausforderungen, insbesondere bei generativen KI-Systemen, fokussieren.

Abstract

The integration of artificial intelligence (AI) into intensive care medicine has made considerable progress in recent studies, particularly in the areas of predictive analytics, early detection of complications, and the development of decision support systems. The main challenges remain availability and quality of data, reduction of bias and the need for explainable results from algorithms and models. Methods to explain these systems are essential to increase trust, understanding, and ethical considerations among healthcare professionals and patients. Proper training of healthcare professionals in AI principles, terminology, ethical considerations, and practical application is crucial for the successful use of AI. Careful assessment of the impact of AI on patient autonomy and data protection is essential for its responsible use in intensive care medicine. A balance between ethical and practical considerations must be maintained to ensure patient-centered care while complying with data protection regulations. Synergistic collaboration between clinicians, AI engineers, and regulators is critical to realizing the full potential of AI in intensive care medicine and maximizing its positive impact on patient care. Future research and development efforts should focus on improving AI models for real-time predictions, increasing the accuracy and utility of AI-based closed-loop systems, and overcoming ethical, technical, and regulatory challenges, especially in generative AI systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. International Medical Device Regulators Forum (2021) Machine learning-enabled medical devices: a subset of AI-enabled medical devices: key terms and definitions. 16. Sept. 2021 (Vorgeschlagenes Dokument zur öffentlichen Konsultation veröffentlicht,)

    Google Scholar 

  2. OECD (2019) Recommendation of the Council on Artificial Intelligence. https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449

  3. DeSalvo K (2023) The AI-assisted, mobile-first health care journey. Catalyst. https://doi.org/10.1056/CAT.23.0263

    Article  Google Scholar 

  4. Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G (2020) Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology 132(2):379–394. https://doi.org/10.1097/ALN.0000000000002960

    Article  PubMed  Google Scholar 

  5. Okada Y, Mertens M, Liu N, Lam SSW, Ong MEH (2023) AI and machine learning in resuscitation: Laufende Forschung, neue Konzepte und zentrale Herausforderungen. Resusc Plus 15:100435. https://doi.org/10.1016/j.resplu.2023.100435

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alfieri F et al (2023) Continuous and early prediction of future moderate and severe acute kidney injury in critically ill patients: development and multi-centric, multi-national external validation of a machine-learning model. PLoS ONE 18(7):e287398. https://doi.org/10.1371/journal.pone.0287398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Flechet M et al (2019) Machine learning versus physicians’ prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKIpredictor. Crit Care 23(1):282. https://doi.org/10.1186/s13054-019-2563-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mollura M, Lehman LH, Mark RG, Barbieri R (2021) A novel artificial intelligence based intensive care unit monitoring system: Using physiological waveforms to identify sepsis. Philos Trans A Math Phys Eng Sci 379(2212):20200252. https://doi.org/10.1098/rsta.2020.0252

    Article  PubMed  PubMed Central  Google Scholar 

  9. Giri J et al (2023) A comparative study on predication of appropriate mechanical ventilation mode through machine learning approach. Bioengineering 10(4):418. https://doi.org/10.3390/bioengineering10040418

    Article  PubMed  PubMed Central  Google Scholar 

  10. Poweleit EA, Vinks AA, Mizuno T (2023) Artificial intelligence and machine learning approaches to facilitate therapeutic drug management and model-informed precision dosing. Ther Drug Monit 45(2):143–150. https://doi.org/10.1097/FTD.0000000000001078

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sander J, Simon P, Hinske C (2023) Big Data und künstliche Intelligenz in der Anästhesie. Anaesthesiologie. https://doi.org/10.1007/s00101-023-01362-5

    Article  PubMed  PubMed Central  Google Scholar 

  12. Arina P et al (2024) Prediction of complications and prognostication in perioperative medicine: a systematic review and PROBAST assessment of machine learning tools. Anesthesiology 140(1):85–101. https://doi.org/10.1097/ALN.0000000000004764

    Article  PubMed  Google Scholar 

  13. D. Ethikrat (2023) Mensch und Maschine – Herausforderungen durch Künstliche Intelligenz. https://www.ethikrat.org/fileadmin/Publikationen/Stellungnahmen/deutsch/stellungnahme-mensch-und-maschine.pdf

  14. Maheshwari K, Cywinski JB, Papay F, Khanna AK, Mathur P (2023) Artificial intelligence for perioperative medicine: perioperative Intelligenz. Anästh Analg 136(4) (https://journals.lww.com/anesthesia-analgesia/fulltext/2023/04000/artificial_intelligence_for_perioperative.5.aspx)

  15. Nadkarni GN, Sakhuja A (2023) Clinical Informatics in critical care medicine. Yale J Biol Med 96(3):397–405. https://doi.org/10.59249/WTTU3055

    Article  PubMed  PubMed Central  Google Scholar 

  16. Meier JM, Tschoellitsch T (2022) Artificial intelligence and machine learning in patient blood management: a scoping review. Anesth Analg 135(3) (https://journals.lww.com/anesthesia-analgesia/fulltext/2022/09000/artificial_intelligence_and_machine_learning_in.11.aspx)

  17. Peine A, Hallawa A, Bickenbach J et al (2021) Development and validation of a reinforcement learning algorithm to dynamically optimize mechanical ventilation in critical care. Npj Digit Med 4:32. https://doi.org/10.1038/s41746-021-00388-6

    Article  PubMed  PubMed Central  Google Scholar 

  18. Campbell R (2013) The five ’rights’ of clinical decision support. J AHIMA 84(10):42–47. https://doi.org/10.3233/JAH-2013-0003 (quiz 48)

    Article  PubMed  Google Scholar 

  19. Auerbach AD et al (2024) Diagnostic errors in hospitalized adults who died or were transferred to intensive care. JAMA Intern Med. https://doi.org/10.1001/jamainternmed.2023.7347

    Article  PubMed  Google Scholar 

  20. Webster P (2023) Six ways large language models are changing healthcare. Nat Med 29(12):2969–2971. https://doi.org/10.1038/s41591-023-02700-1

    Article  CAS  PubMed  Google Scholar 

  21. Martin L, Peine A, Gronholz M, Marx G, Bickenbach J (2022) Künstliche Intelligenz: Herausforderungen und Nutzen in der Intensivmedizin. Anästhesiol Intensivmed Notfallmed Schmerzther 57(3):199–209. https://doi.org/10.1055/a-1423-8006

    Article  PubMed  Google Scholar 

  22. Hyland SL, Faltys M, Esteban C et al (2020) Early prediction of circulatory failure in the intensive care unit using machine learning. Nat Med 26(3):364–373

    Article  CAS  PubMed  Google Scholar 

  23. Bitker L, Talmor D, Richard JC (2022) Emerging applications of artificial intelligence in acute respiratory distress syndrome. Intensive Care Med 48(8):995–1008

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goh KH, Wang L, Yeow JJL et al (2021) Artificial intelligence in predicting acute kidney injury: from theory to practice. Nat Commun 12(1):711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Böck M, Malle J, Heitzinger C et al (2022) Artificial intelligence approaches for sepsis prediction. PLoS ONE 17(11):e275358

    Google Scholar 

  26. Bologheanu R, Kapral L, Zeiner S et al (2023) AI in sepsis prediction and management. J Clin Med 12(4):1513. https://doi.org/10.3390/jcm12041513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang H, Wang AY, He X et al (2022) AI-enhanced diagnosis of acute kidney injury. BMC Nephrol 23(1):405

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bishara A, Chiu C, Butte AJ et al (2022) AI in detection and management of postoperative delirium. BMC Anesthesiol 22(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marx G et al (2021) Algorithmic surveillance of ICU patients with acute respiratory distress syndrome (ASIC): protocol for a multicentre stepped-wedge cluster randomised quality improvement strategy. BMJ Open. https://doi.org/10.1136/bmjopen-2020-045589

    Article  PubMed  PubMed Central  Google Scholar 

  30. Graeßner M et al (2023) Enabling personalized perioperative risk prediction by using a machine-learning model based on preoperative data. Sci Rep 13(1):7128. https://doi.org/10.1038/s41598-023-33981-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Falini S, Angelotti G, Cecconi M (2020) ICU management based on big data. Curr Opin Anesthesiol 33(2) (https://journals.lww.com/co-anesthesiology/fulltext/2020/04000/icu_management_based_on_big_data.7.aspx)

  32. Peine A, Lütge C, Poszler F, Celi L, Schöffski O, Marx G et al (2020) Künstliche Intelligenz und maschinelles Lernen in der intensivmedizinischen Forschung und klinischen Anwendung. Anästh Intensivmed 61:372–384. https://doi.org/10.19224/ai2020.372

    Article  Google Scholar 

  33. Clusmann J et al (2023) The future landscape of large language models in medicine. Commun Med 3(1):141. https://doi.org/10.1038/s43856-023-00370-1

    Article  PubMed  PubMed Central  Google Scholar 

  34. Singhal K et al (2023) Large language models encode clinical knowledge. Nature 620(7972):172–180. https://doi.org/10.1038/s41586-023-06291-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW (2023) Large language models in medicine. Nat Med 29(8):1930–1940. https://doi.org/10.1038/s41591-023-02448-8

    Article  CAS  PubMed  Google Scholar 

  36. Wachter RM, Brynjolfsson E (2024) Will generative artificial intelligence deliver on its promise in health care? JAMA 331(1):65–69. https://doi.org/10.1001/jama.2023.25054

    Article  PubMed  Google Scholar 

  37. Goodman RS et al (2023) Accuracy and reliability of Chatbot responses to physician questions. JAMA Netw Open 6(10):e2336483. https://doi.org/10.1001/jamanetworkopen.2023.36483

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sonntagbauer M, Haar M, Kluge S (2023) Künstliche Intelligenz: Wie werden ChatGPT und andere KI-Anwendungen unseren ärztlichen Alltag verändern? Med Klin Intensivmed Notfallmed 118(5):366–371. https://doi.org/10.1007/s00063-023-01019-6

    Article  Google Scholar 

  39. Schweingruber N, Gerloff C (2021) Künstliche Intelligenz in der Neurointensivmedizin [Artificial intelligence in neurocritical care]. Nervenarzt 92(2):115–126. https://doi.org/10.1007/s00115-020-01050-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Daneshjou R, Smith MP, Sun MD, Rotemberg V, Zou J (2021) Lack of transparency and potential bias in artificial intelligence data sets and algorithms: a scoping review. JAMA Dermatol 157(11):1362–1369. https://doi.org/10.1001/jamadermatol.2021.3129

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marx G (2022) Chancen der Digitalisierung für innovative Gesundheitsforschung und -versorgung. Anästhesiol Intensivmed Notfallmed Schmerzther 57(3):169–171. https://doi.org/10.1055/a-1736-9540

    Article  PubMed  Google Scholar 

  42. Wilkinson MD et al The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:160018. https://doi.org/10.1038/sdata.2016.18

  43. Fritsch S, Maassen O, Riedel M (2022) Künstliche Intelligenz: Infrastrukturen und Voraussetzungen auf europäischer Ebene. Anästhesiol Intensivmed Notfallmed Schmerzther 57:172–184. https://doi.org/10.1055/a-1423-8052

    Article  PubMed  Google Scholar 

  44. Dohmen S, Wahl A, Benstoem C (2022) Digital gestützte intensivmedizinische Versorgungsnetzwerke. Anästhesiol Intensivmed Notfallmed Schmerzther 57:211–220. https://doi.org/10.1055/a-1423-7982

    Article  PubMed  Google Scholar 

  45. Johnson AEW, Bulgarelli L, Shen L, Gayles A, Shammout A, Horng S, Pollard TJ, Hao S, Moody B, Gow B, Lehman LH, Celi LA, Mark RG (2023) MIMIC-IV, a freely accessible electronic health record dataset. Sci Data 10(1):1. https://doi.org/10.1038/s41597-022-01899-x (Erratum in: Sci Data. 2023 Jan 16;10(1):31. Erratum in: Sci Data. 2023 Apr 18;10(1):219)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saeed M, Villarroel M, Moody G et al (2011) Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. Crit Care Med 39(5):952–960

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pollard TJ, Johnson AEW, Badawi O et al (2018) A public ICU database with high temporal resolution. Sci Data 5:180178

    Article  PubMed  PubMed Central  Google Scholar 

  48. Plana D, Shung DL, Grimshaw AA, Saraf A, Sung JJY, Kann BH (2022) Randomized clinical trials of machine learning interventions in health care: a systematic review. JAMA Netw Open 5(9):e2233946. https://doi.org/10.1001/jamanetworkopen.2022.33946

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kwong JCC et al (2023) APPRAISE-AI tool for quantitative evaluation of AI studies for clinical decision support. JAMA Netw Open 6(9):e2335377. https://doi.org/10.1001/jamanetworkopen.2023.35377

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hart B, Lundh A, Bero L (2012) Effect of reporting bias on meta-analyses of drug trials: reanalysis of meta-analyses. BMJ 344:d7202

    Article  PubMed  Google Scholar 

  51. Jones CW, Keil LG, Platts-Mills TF et al (2015) Non-publication of large randomized clinical trials: cross-sectional analysis. BMC Med 13:282

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schulz KF, Altman DG, Moher D (2010) CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ 340:c332

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kirkham JJ, Dwan KM, Smyth R et al (2010) The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomised trials. BMJ 340:c365

    Article  PubMed  Google Scholar 

  54. Liu X, Rivera SC, Denniston AK et al (2020) Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med 26(9):1364–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rivera SC, Liu X, Calvert MJ et al (2020) Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension. Nat Med 26(9):1351–1363

    Article  Google Scholar 

  56. Rivera SC, Liu X, Calvert MJ et al (2020) SPIRIT-AI and CONSORT-AI 2020 guidelines: better reporting of AI trials in health care. Lancet Digit Health 2(10):e549–e560

    PubMed Central  Google Scholar 

  57. Wolff RF et al (2019) PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med 170(1):51–58. https://doi.org/10.7326/M18-1376

    Article  PubMed  Google Scholar 

  58. Liu Y, Chen P‑HC, Krause J, Peng L (2019) How to read articles that use machine learning: users’ guides to the medical literature. JAMA 322(18):1806–1816. https://doi.org/10.1001/jama.2019.16489

    Article  PubMed  Google Scholar 

  59. Tretter M, Samhammer D, Dabrock P (2023) Künstliche Intelligenz in der Medizin: Von Entlastungen und neuen Anforderungen im ärztlichen Handeln. Ethik Med

  60. Hashimoto DA, Varas J, Schwartz TA (2024) Practical guide to machine learning and artificial intelligence in surgical education research. JAMA Surg. https://doi.org/10.1001/jamasurg.2023.6687

    Article  PubMed  Google Scholar 

  61. De S, Jackson CD, Jones DB (2023) Intelligent virtual operating room for enhancing nontechnical skills. JAMA Surg 158(6):662–663. https://doi.org/10.1001/jamasurg.2022.6721

    Article  PubMed  PubMed Central  Google Scholar 

  62. Estrada Alamo CE, Diatta F, Monsell SE, Lane-Fall MB (2023) Artificial intelligence in anesthetic care: a survey of physician anesthesiologists. Anesth Analg (https://journals.lww.com/anesthesia-analgesia/fulltext/9900/artificial_intelligence_in_anesthetic_care__a.673.aspx)

  63. World Health Organization (2023) Regulatory considerations on artificial intelligence for health. Weltgesundheitsorganisation, Genf

    Google Scholar 

  64. U.S. Food and Drug Administration (FDA) (2023) Artificial intelligence and machine learning (AI/ML)-enabled medical devices

    Google Scholar 

  65. Lee JT, Moffett AT, Maliha G, Faraji Z, Kanter GP, Weissman GE (2023) Analysis of devices authorized by the FDA for clinical decision support in critical care. JAMA Intern Med 183(12):1399–1401. https://doi.org/10.1001/jamainternmed.2023.5002

    Article  PubMed  Google Scholar 

  66. EU-Kommission (2023) EU AI Act: first regulation on artificial intelligence

    Google Scholar 

  67. EU-Parlament (2023) EU AI Act: first regulation on artificial intelligence

  68. Shah NH et al (2023) A nationwide network of health AI assurance laboratories. JAMA. https://doi.org/10.1001/jama.2023.26930

    Article  PubMed  PubMed Central  Google Scholar 

  69. TUEV AI-LAB (2023) TUV AI.LAB

    Google Scholar 

  70. OECD (2022) OECD framework for the classification of AI systems Bd. 323. https://doi.org/10.1787/cb6d9eca-en

    Book  Google Scholar 

  71. Nagendran M, Festor P, Komorowski M, Gordon AC, Faisal AA (2023) Quantifying the impact of AI recommendations with explanations on prescription decision making. Npj Digit Med 6(1):206. https://doi.org/10.1038/s41746-023-00955-z

    Article  PubMed  PubMed Central  Google Scholar 

  72. WHO (Hrsg) (2024) Ethics and governance of artificial intelligence for health. Guidance on large multi-modal models. Licence: CC BY-NC-SA 3.0 IGO. World Health Organization, Geneva

    Google Scholar 

  73. Cazzaniga et al (2024) Gen-AI: artificial intelligence and the future of work. IMF Staff Discussion Note SDN2024/001. International Monetary Fund, Washington, DC.

    Book  Google Scholar 

  74. Vassilev A, Oprea A, Fordyce A, Anderson H (2024) Adversarial machine learning: a taxonomy and terminology of attacks and mitigations. NIST Artifcial Intelligence (AI) Report, NIST Trustworthy and Responsible AI NIST AI 100-2e2023. National Institute of Standards and Technology, Gaithersburg https://doi.org/10.6028/NIST.AI.100-2e2023

    Book  Google Scholar 

  75. Perschinka F, Peer A, Joannidis M (2024) Künstliche Intelligenz und akute Nierenschädigung. Med Klin Intensivmed Notfmed. https://doi.org/10.1007/s00063-024-01111-5

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Baumgart.

Ethics declarations

Interessenkonflikt

A. Baumgart, G. Beck und D. Ghezel-Ahmadi geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Matthias Baumgärtel, Nürnberg

Michael Joannidis, Innsbruck

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumgart, A., Beck, G. & Ghezel-Ahmadi, D. Künstliche Intelligenz in der Intensivmedizin. Med Klin Intensivmed Notfmed 119, 189–198 (2024). https://doi.org/10.1007/s00063-024-01117-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-024-01117-z

Schlüsselwörter

Keywords

Navigation