Plank LD, Hill GL (2000) Similarity of changes in body composition in intensive care patients following severe sepsis or major blunt injury. Ann N Y Acad Sci 904:592–602
CAS
PubMed
Article
Google Scholar
Hiura G, Lebwohl B, Seres DS (2020) Malnutrition diagnosis in critically ill patients using 2012 Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition standardized diagnostic characteristics is associated with longer hospital and intensive care unit length of stay and increased in-hospital mortality. J Parenter Enteral Nutr 44:256–264
Article
Google Scholar
Sundstrom Rehal M, Tjader I, Wernerman J (2016) Nutritional needs for the critically ill in relation to inflammation. Curr Opin Clin Nutr Metab Care 19:138–143
PubMed
Article
CAS
Google Scholar
Elke G, Hartl WH, Kreymann K, Adolph M, Felbinger TW, Graf T, de Heer G, Heller A, Kampa U, Mayer K, Muhl E, Niemann B, Rümelin A, Steiner S, Stoppe C, Weimann A, Bischoff SC (2018) DGEM-Leitlinie: „Klinische Ernährung in der Intensivmedizin“. Aktuel Ernahrungsmed 43:341–408
Article
Google Scholar
DIVI (2010) Empfehlungen zur Ausstattung von Intensivstationen. https://www.divi.de/joomlatools-files/docman-files/publikationen/intensivmedizin/20101130-publikationen-empfehlungen-zur-struktur-v-intensivstationen-langversion.pdf. Zugegriffen: 30.03.2022
DIVI (2017) Intermediate Care Station, Empfehlungen zur Ausstattung und Struktur. ttps://www.divi.de/empfehlungen/publikationen/viewdocument/104/empfehlungen-zur-struktur-von-imc-stationen-l. Zugegriffen: 30.03.2022
BfArM-OPS-Version 2022-DIMDI. https://www.dimdi.de/static/de/klassifikationen/ops/kode-suche/opshtml2022/block-8-97...8-98.htm#code8-97. Zugegriffen: 30.03.2022
Lew CCH, Yandell R, Fraser RJL, Chua AP, Chong MFF, Miller M (2017) Association between malnutrition and clinical outcomes in the intensive care unit: a systematic review. JPEN J Parenter Enteral Nutr 41:744–758
PubMed
Article
Google Scholar
Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, Van Cromphaut S, Ingels C, Meersseman P, Muller J, Vlasselaers D, Debaveye Y, Desmet L, Dubois J, Van Assche A, Vanderheyden S, Wilmer A, Van den Berghe G (2011) Early versus late parenteral nutrition in critically ill adults. N Engl J Med 365:506–517
CAS
PubMed
Article
Google Scholar
Fivez T, Kerklaan D, Mesotten D, Verbruggen S, Wouters PJ, Vanhorebeek I, Debaveye Y, Vlasselaers D, Desmet L, Casaer MP, Garcia Guerra G, Hanot J, Joffe A, Tibboel D, Joosten K, Van den Berghe G (2016) Early versus late parenteral nutrition in critically ill children. N Engl J Med 374:1111–1122
CAS
PubMed
Article
Google Scholar
Mogensen KM, Robinson MK, Casey JD, Gunasekera NS, Moromizato T, Rawn JD, Christopher KB (2015) Nutritional status and mortality in the critically ill. Crit Care Med 43:2605–2615
CAS
PubMed
Article
Google Scholar
Li G, Zhou CL, Ba YM, Wang YM, Song B, Cheng XB, Dong QF, Wang LL, You SS (2021) Nutritional risk and therapy for severe and critical COVID-19 patients: A multicenter retrospective observational study. Clin Nutr 40(4):2154–2161
CAS
PubMed
Article
Google Scholar
Zhang P, He Z, Yu G, Peng D, Feng Y, Ling J, Wang Y, Li S, Bian Y (2021) The modified NUTRIC score can be used for nutritional risk assessment as well as prognosis prediction in critically ill COVID-19 patients. Clin Nutr 40(2):534–541
CAS
PubMed
Article
Google Scholar
Akinnusi ME, Pineda LA, El Solh AA (2008) Effect of obesity on intensive care morbidity and mortality: a meta-analysis. Crit Care Med 36:151–158
PubMed
Article
Google Scholar
Pepper DJ, Sun J, Welsh J, Cui X, Suffredini AF, Eichacker PQ (2016) Increased body mass index and adjusted mortality in ICU patients with sepsis or septic shock: a systematic review and meta-analysis. Crit Care 20:181
PubMed
PubMed Central
Article
Google Scholar
Wang S, Liu X, Chen Q, Liu C, Huang C, Fang X (2017) The role of increased body mass index in outcomes of sepsis: a systematic review and meta-analysis. BMC Anesthesiol 17:118
PubMed
PubMed Central
Article
Google Scholar
Khalooeifard R, Djafarian K, Safabakhsh M, Rahmani J, Shab-Bidar S (2020) Dose-response meta-analysis of the impact of body mass index on mortality in the intensive care unit. Nutr Clin Pract 35:1010–1020
PubMed
Article
Google Scholar
Decruyenaere A, Steen J, Colpaert K, Benoit DD, Decruyenaere J, Vansteelandt S (2020) The obesity paradox in critically ill patients: a causal learning approach to a casual finding. Crit Care 24:485
PubMed
PubMed Central
Article
Google Scholar
Bosy-Westphal A, Muller MJ (2021) Diagnosis of obesity based on body composition-associated health risks-Time for a change in paradigm. Obes Rev 22(Suppl. 2):e12190
PubMed
Google Scholar
Jensen GL, Cederholm T, Correia M, Gonzalez MC, Fukushima R, Higashiguchi T, de Baptista GA, Barazzoni R, Blaauw R, Coats AJS, Crivelli A, Evans DC, Gramlich L, Fuchs-Tarlovsky V, Keller H, Llido L, Malone A, Mogensen KM, Morley JE, Muscaritoli M, Nyulasi I, Pirlich M, Pisprasert V, de van der Schueren M, Siltharm S, Singer P, Tappenden KA, Velasco N, Waitzberg DL, Yamwong P, Yu J, Compher C, Van Gossum A (2019) GLIM criteria for the diagnosis of malnutrition: a consensus report from the global clinical nutrition community. J Parenter Enteral Nutr 43:32–40
Article
Google Scholar
Theilla M, Rattanachaiwong S, Kagan I, Rigler M, Bendavid I, Singer P (2021) Validation of GLIM malnutrition criteria for diagnosis of malnutrition in ICU patients: An observational study. Clin Nutr 40:3578–3584
PubMed
Article
Google Scholar
Cederholm T, Jensen GL, Correia M, Gonzalez MC, Fukushima R, Higashiguchi T, Baptista G, Barazzoni R, Blaauw R, Coats A, Crivelli A, Evans DC, Gramlich L, Fuchs-Tarlovsky V, Keller H, Llido L, Malone A, Mogensen KM, Morley JE, Muscaritoli M, Nyulasi I, Pirlich M, Pisprasert V, de van der Schueren MAE, Siltharm S, Singer P, Tappenden K, Velasco N, Waitzberg D, Yamwong P, Yu J, Van Gossum A, Compher C (2019) GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin Nutr 38:1–9
CAS
PubMed
Article
Google Scholar
Berger MM, Reintam-Blaser A, Calder PC, Casaer M, Hiesmayr MJ, Mayer K, Montejo JC, Pichard C, Preiser JC, van Zanten ARH, Bischoff SC, Singer P (2019) Monitoring nutrition in the ICU. Clin Nutr 38:584–593
PubMed
Article
Google Scholar
Hartl WH, Parhofer KG, Kuppinger D, Rittler P (2013) S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) in Zusammenarbeit mit der GESKES und der AKE: Besonderheiten der Überwachung bei künstlicher Ernährung. Aktuel Ernahrungsmed 38:e90–e100
Article
Google Scholar
Davies H, Leslie G, Jacob E, Morgan D (2019) Estimation of body fluid status by fluid balance and body weight in critically ill adult patients: a systematic review. Worldviews Evid Based Nurs 16:470–477
PubMed
Article
Google Scholar
Ravasco P, Camilo ME, Gouveia-Oliveira A, Adam S, Brum G (2002) A critical approach to nutritional assessment in critically ill patients. Clin Nutr 21:73–77
CAS
PubMed
Article
Google Scholar
Petersen A, Bressem K, Albrecht J, Thiess HM, Vahldiek J, Hamm B, Makowski MR, Niehues A, Niehues SM, Adams LC (2020) The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany. Metabolism 110:154317
CAS
PubMed
PubMed Central
Article
Google Scholar
Vanpee G, Hermans G, Segers J, Gosselink R (2014) Assessment of limb muscle strength in critically ill patients: a systematic review. Crit Care Med 42:701–711
PubMed
Article
Google Scholar
Borges RC, Soriano FG (2019) Association between muscle wasting and muscle strength in patients who developed severe sepsis and septic shock. Shock 51(3):312–320
PubMed
Article
Google Scholar
Hermans G, Van Aerde N, Meersseman P, Van Mechelen H, Debaveye Y, Wilmer A, Gunst J, Casaer MP, Dubois J, Wouters P, Gosselink R, Van den Berghe G (2019) Five-year mortality and morbidity impact of prolonged versus brief ICU stay: A propensity score matched cohort study. Thorax 74(11):1037–1045
PubMed
Article
Google Scholar
Saiphoklang N, Tepwimonpetkun C (2020) Interest of hand grip strength to predict outcome in mechanically ventilated patients. Heart Lung 49(5):637–640
PubMed
Article
Google Scholar
Bragança RD, Ravetti CG, Barreto L, Ataíde TBLS, Carneiro RM, Teixeira AL, Nobre V (2019) Use of handgrip dynamometry for diagnosis and prognosis assessment of intensive care unit acquired weakness: A prospective study. Heart Lung 48(6):532–537
PubMed
Article
Google Scholar
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, McIntyre L, Ostermann M, Prescott HC, Schorr C, Simpson S, Wiersinga WJ, Alshamsi F, Angus DC, Arabi Y, Azevedo L, Beale R, Beilman G, Belley-Cote E, Burry L, Cecconi M, Centofanti J, Coz Yataco A, De Waele J, Dellinger RP, Doi K, Du B, Estenssoro E, Ferrer R, Gomersall C, Hodgson C, Moller MH, Iwashyna T, Jacob S, Kleinpell R, Klompas M, Koh Y, Kumar A, Kwizera A, Lobo S, Masur H, McGloughlin S, Mehta S, Mehta Y, Mer M, Nunnally M, Oczkowski S, Osborn T, Papathanassoglou E, Perner A, Puskarich M, Roberts J, Schweickert W, Seckel M, Sevransky J, Sprung CL, Welte T, Zimmerman J, Levy M (2021) Surviving sepsis campaign: International guidelines for management of sepsis and septic shock. Intensive Care Med 2021(47):1181–1247
Article
Google Scholar
McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, McCarthy MS, Davanos E, Rice TW, Cresci GA, Gervasio JM, Sacks GS, Roberts PR, Compher C (2016) Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient. J Parenter Enteral Nutr 40:159–211 (Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.))
CAS
Article
Google Scholar
Reintam Blaser A, Starkopf J, Alhazzani W, Berger MM, Casaer MP, Deane AM, Fruhwald S, Hiesmayr M, Ichai C, Jakob SM, Loudet CI, Malbrain ML, Montejo Gonzalez JC, Paugam-Burtz C, Poeze M, Preiser JC, Singer P, van Zanten AR, De Waele J, Wendon J, Wernerman J, Whitehouse T, Wilmer A, Oudemans-van Straaten HM, Function EWGo G (2017) Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intensive Care Med 43:380–398
PubMed
PubMed Central
Article
Google Scholar
Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, Hiesmayr M, Mayer K, Montejo JC, Pichard C, Preiser JC, van Zanten ARH, Oczkowski S, Szczeklik W, Bischoff SC (2019) ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 38:48–79
PubMed
Article
Google Scholar
Mooi NM, Ncama BP (2019) Evidence on nutritional therapy practice guidelines and implementation in adult critically ill patients: a scoping review protocol. Syst Rev 8:291
PubMed
PubMed Central
Article
Google Scholar
Valentini LV, Volkert D, Schütz T (2013) Guideline of the German Society for Nutritional Medicine (DGEM) DGEM terminology for clinical nutrition. Aktuel Ernahrungsmed 38:97–111
Article
Google Scholar
Kondrup J (2014) Nutritional-risk scoring systems in the intensive care unit. Curr Opin Clin Nutr Metab Care 17:177–182
CAS
PubMed
Article
Google Scholar
Vellas B, Villars H, Abellan G, Soto ME, Rolland Y, Guigoz Y, Morley JE, Chumlea W, Salva A, Rubenstein LZ, Garry P (2006) Overview of the MNA—Its history and challenges. J Nutr Health Aging 10:456–463 (discussion 463–455)
CAS
PubMed
Google Scholar
Detsky AS, McLaughlin JR, Baker JP, Johnston N, Whittaker S, Mendelson RA, Jeejeebhoy KN (1987) What is subjective global assessment of nutritional status? J Parenter Enteral Nutr 11:8–13
CAS
Article
Google Scholar
da Silva AT, Hauschild DB, de Almeida Oliveira LD, de Fragas Hinnig P, Franco Moreno YM, Wazlawik E (2018) Association of hyperhydration evaluated by bioelectrical impedance analysis and mortality in patients with different medical conditions: Systematic review and meta-analyses. Clin Nutr ESPEN 28:12–20
PubMed
Article
Google Scholar
Bector S, Vagianos K, Suh M, Duerksen DR (2016) Does the subjective global assessment predict outcome in critically ill medical patients? J Intensive Care Med 31:485–489
PubMed
Article
Google Scholar
Gattermann Pereira T, da Silva Fink J, Tosatti JAG, Silva FM (2019) Subjective global assessment can be performed in critically ill surgical patients as a predictor of poor clinical outcomes. Nutr Clin Pract 34:131–136
PubMed
Article
Google Scholar
Sheean PM, Peterson SJ, Chen Y, Liu D, Lateef O, Braunschweig CA (2013) Utilizing multiple methods to classify malnutrition among elderly patients admitted to the medical and surgical intensive care units (ICU). Clin Nutr 32:752–757
PubMed
PubMed Central
Article
Google Scholar
Rattanachaiwong S, Zribi B, Kagan I, Theilla M, Heching M, Singer P (2020) Comparison of nutritional screening and diagnostic tools in diagnosis of severe malnutrition in critically ill patients. Clin Nutr 39:3419–3425
PubMed
Article
Google Scholar
Guigoz Y, Lauque S, Vellas BJ (2002) Identifying the elderly at risk for malnutrition. The mini nutritional assessment. Clin Geriatr Med 18:737–757
PubMed
Article
Google Scholar
Heyland DK, Dhaliwal R, Jiang X, Day AG (2011) Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care 15:R268
PubMed
PubMed Central
Article
Google Scholar
Compher C, Chittams J, Sammarco T, Nicolo M, Heyland DK (2017) Greater protein and energy intake may be associated with improved mortality in higher risk critically ill patients: a multicenter, multinational observational study. Crit Care Med 45:156–163
PubMed
Article
Google Scholar
Arabi YM, Aldawood AS, Al-Dorzi HM, Tamim HM, Haddad SH, Jones G, McIntyre L, Solaiman O, Sakkijha MH, Sadat M, Mundekkadan S, Kumar A, Bagshaw SM, Mehta S (2017) Permissive underfeeding or standard enteral feeding in high- and low-nutritional-risk critically ill adults. Post hoc analysis of the PermiT trial. Am J Respir Crit Care Med 195:652–662
CAS
PubMed
Article
Google Scholar
Canales C, Elsayes A, Yeh DD, Belcher D, Nakayama A, McCarthy CM, Chokengarmwong N, Quraishi SA (2019) Nutrition risk in critically ill versus the nutritional risk screening 2002: are they comparable for assessing risk of malnutrition in critically ill patients? J Parenter Enteral Nutr 43:81–87
CAS
Article
Google Scholar
Lew CCH, Cheung KP, Chong MFF, Chua AP, Fraser RJL, Miller M (2017) Combining 2 commonly adopted nutrition instruments in the critical care setting is superior to administering either one alone. JPEN J Parenter Enteral Nutr
Rahman A, Hasan RM, Agarwala R, Martin C, Day AG, Heyland DK (2016) Identifying critically-ill patients who will benefit most from nutritional therapy: Further validation of the “modified NUTRIC” nutritional risk assessment tool. Clin Nutr 35:158–162
PubMed
Article
Google Scholar
Lee ZY, Hasan MS, Day AG, Ng CC, Ong SP, Yap CSL, Engkasan JP, Barakatun-Nisak MY, Heyland DK (2021) Initial development and validation of a novel nutrition risk, sarcopenia, and frailty assessment tool in mechanically ventilated critically ill patients: The NUTRIC-SF score. J Parenter Enteral Nutr
Lambell KJ, King SJ, Forsyth AK, Tierney AC (2018) Association of energy and protein delivery on skeletal muscle mass changes in critically ill adults: a systematic review. J Parenter Enteral Nutr 42:1112–1122
Article
Google Scholar
Sheean P, Gonzalez MC, Prado CM, McKeever L, Hall AM, Braunschweig CA (2020) American Society for Parenteral and Enteral Nutrition clinical guidelines: The validity of body composition assessment in clinical populations. J Parenter Enteral Nutr 44:12–43
Article
Google Scholar
Tinsley GM, Moore ML, Rafi Z, Griffiths N, Harty PS, Stratton MT, Benavides ML, Dellinger JR, Adamson BT (2021) Explaining discrepancies between total and segmental DXA and BIA body composition estimates using Bayesian regression. J Clin Densitom 24:294–307
PubMed
Article
Google Scholar
Paris MT, Lafleur B, Dubin JA, Mourtzakis M (2017) Development of a bedside viable ultrasound protocol to quantify appendicular lean tissue mass. J Cachexia Sarcopenia Muscle 8:713–726
PubMed
PubMed Central
Article
Google Scholar
Paris MT, Mourtzakis M, Day A, Leung R, Watharkar S, Kozar R, Earthman C, Kuchnia A, Dhaliwal R, Moisey L, Compher C, Martin N, Nicolo M, White T, Roosevelt H, Peterson S, Heyland DK (2017) Validation of bedside ultrasound of muscle layer thickness of the quadriceps in the critically ill patient (VALIDUM study). J Parenter Enteral Nutr 41:171–180
Article
Google Scholar
Parry SM, El-Ansary D, Cartwright MS, Sarwal A, Berney S, Koopman R, Annoni R, Puthucheary Z, Gordon IR, Morris PE, Denehy L (2015) Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function. J Crit Care 30:1151.e9–1151.e14
Article
Google Scholar
Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Phadke R, Dew T, Sidhu PS, Velloso C, Seymour J, Agley CC, Selby A, Limb M, Edwards LM, Smith K, Rowlerson A, Rennie MJ, Moxham J, Harridge SD, Hart N, Montgomery HE (2013) Acute muscle skeletal muscle wasting in critical illness. JAMA 310:1591–1600
CAS
PubMed
Article
Google Scholar
Sarwal A, Parry SM, Berry MJ, Hsu FC, Lewis MT, Justus NW, Morris PE, Denehy L, Berney S, Dhar S, Cartwright MS (2015) Interobserver reliability of quantitative muscle sonographic analysis in the critically ill population. J Ultrasound Med 34:1191–1200
PubMed
Article
Google Scholar
Tillquist M, Kutsogiannis DJ, Wischmeyer PE, Kummerlen C, Leung R, Stollery D, Karvellas CJ, Preiser JC, Bird N, Kozar R, Heyland DK (2014) Bedside ultrasound is a practical and reliable measurement tool for assessing quadriceps muscle layer thickness. J Parenter Enteral Nutr 38:886–890
Article
Google Scholar
Pardo E, El Behi H, Boizeau P, Verdonk F, Alberti C, Lescot T (2018) Reliability of ultrasound measurements of quadriceps muscle thickness in critically ill patients. BMC Anesthesiol 18:205
PubMed
PubMed Central
Article
Google Scholar
Lee S, Choi JI, Park MY, Yeo DM, Byun JY, Jung SE, Rha SE, Oh SN, Lee YJ (2014) Intra- and interobserver reliability of gray scale/dynamic range evaluation of ultrasonography using a standardized phantom. Ultrasonography 33:91–97
PubMed
PubMed Central
Article
Google Scholar
Deniz O, Cruz-Jentoft A, Sengul Aycicek G, Unsal P, Esme M, Ucar Y, Burkuk S, Sendur A, Yavuz BB, Cankurtaran M, Halil M (2020) Role of ultrasonography in estimating muscle mass in sarcopenic obesity. J Parenter Enteral Nutr 44:1398–1406
CAS
Article
Google Scholar
Puthucheary ZA, McNelly AS, Rawal J, Connolly B, Sidhu PS, Rowlerson A, Moxham J, Harridge SD, Hart N, Montgomery HE (2017) Rectus femoris cross-sectional area and muscle layer thickness: Comparative markers of muscle wasting and weakness. Am J Respir Crit Care Med 195:136–138
PubMed
PubMed Central
Article
Google Scholar
Dresen E, Weissbrich C, Fimmers R, Putensen C, Stehle P (2021) Medical high-protein nutrition therapy and loss of muscle mass in adult ICU patients: A randomized controlled trial. Clin Nutr 40:1562–1570
CAS
PubMed
Article
Google Scholar
Hadda V, Kumar R, Khilnani GC, Kalaivani M, Madan K, Tiwari P, Mittal S, Mohan A, Bhalla AS, Guleria R (2018) Trends of loss of peripheral muscle thickness on ultrasonography and its relationship with outcomes among patients with sepsis. J Intensive Care 6:81
PubMed
PubMed Central
Article
Google Scholar
Lee ZY, Ong SP, Ng CC, Yap CSL, Engkasan JP, Barakatun-Nisak MY, Heyland DK, Hasan MS (2021) Association between ultrasound quadriceps muscle status with premorbid functional status and 60-day mortality in mechanically ventilated critically ill patient: A single-center prospective observational study. Clin Nutr 40(3):1338–1347
PubMed
Article
Google Scholar
Paris MT, Mourtzakis M (2021) Muscle composition analysis of ultrasound images: a narrative review of texture analysis. Ultrasound Med Biol 47:880–895
PubMed
Article
Google Scholar
Wells CI, McCall JL, Plank LD (2019) Relationship between total body protein and cross-sectional skeletal muscle area in liver cirrhosis is influenced by overhydration. Liver Transpl 25:45–55
PubMed
Article
Google Scholar
Sheean PM, Peterson SJ, Gomez Perez S, Troy KL, Patel A, Sclamberg JS, Ajanaku FC, Braunschweig CA (2014) The prevalence of sarcopenia in patients with respiratory failure classified as normally nourished using computed tomography and subjective global assessment. J Parenter Enteral Nutr 38:873–879
Article
Google Scholar
Weijs PJ, Looijaard WG, Dekker IM, Stapel SN, Girbes AR, Oudemans-van Straaten HM, Beishuizen A (2014) Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care 18:R12
PubMed
PubMed Central
Article
Google Scholar
Stene GB, Balstad TR, Leer ASM, Bye A, Kaasa S, Fallon M, Laird B, Maddocks M, Solheim TS (2019) Deterioration in muscle mass and physical function differs according to weight loss history in cancer cachexia. Cancers (Basel) 11:1925
CAS
Article
Google Scholar
Montano-Loza AJ, Angulo P, Meza-Junco J, Prado CM, Sawyer MB, Beaumont C, Esfandiari N, Ma M, Baracos VE (2016) Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J Cachexia Sarcopenia Muscle 7:126–135
PubMed
Article
Google Scholar
Tolonen A, Pakarinen T, Sassi A, Kytta J, Cancino W, Rinta-Kiikka I, Pertuz S, Arponen O (2021) Methodology, clinical applications, and future directions of body composition analysis using computed tomography (CT) images: A review. Eur J Radiol 145:109943
PubMed
Article
Google Scholar
Baggerman MR, van Dijk DPJ, Winkens B, Schnabel RM, van Gassel RJJ, Bol ME, Bakers FC, Olde Damink SWM, van de Poll MCG (2021) Edema in critically ill patients leads to overestimation of skeletal muscle mass measurements using computed tomography scans. Nutrition 89:111238
PubMed
Article
Google Scholar
Paris MT (2020) Body composition analysis of computed tomography scans in clinical populations: the role of deep learning. Lifestyle Genom 13:28–31
CAS
PubMed
Article
Google Scholar
Robert S, Zarowitz BJ, Hyzy R, Eichenhorn M, Peterson EL, Popovich J Jr. (1993) Bioelectrical impedance assessment of nutritional status in critically ill patients. Am J Clin Nutr 57:840–844
CAS
PubMed
Article
Google Scholar
Moonen H, Van Zanten ARH (2021) Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness. Curr Opin Crit Care 27:344–353
PubMed
PubMed Central
Article
Google Scholar
Savalle M, Gillaizeau F, Maruani G, Puymirat E, Bellenfant F, Houillier P, Fagon JY, Faisy C (2012) Assessment of body cell mass at bedside in critically ill patients. Am J Physiol Endocrinol Metab 303:E389–E396
CAS
PubMed
Article
Google Scholar
Nakanishi N, Tsutsumi R, Okayama Y, Takashima T, Ueno Y, Itagaki T, Tsutsumi Y, Sakaue H, Oto J (2019) Monitoring of muscle mass in critically ill patients: comparison of ultrasound and two bioelectrical impedance analysis devices. J Intensive Care 7:61
PubMed
PubMed Central
Article
Google Scholar
Samoni S, Vigo V, Resendiz LI, Villa G, De Rosa S, Nalesso F, Ferrari F, Meola M, Brendolan A, Malacarne P, Forfori F, Bonato R, Donadio C, Ronco C (2016) Impact of hyperhydration on the mortality risk in critically ill patients admitted in intensive care units: comparison between bioelectrical impedance vector analysis and cumulative fluid balance recording. Crit Care 20:95
PubMed
PubMed Central
Article
Google Scholar
do Amaral Paes TC, de Oliveira KCC, de Carvalho Padilha P, Peres WAF (2018) Phase angle assessment in critically ill cancer patients: Relationship with the nutritional status, prognostic factors and death. J Crit Care 44:430–435
PubMed
Article
Google Scholar
Stapel SN, Looijaard W, Dekker IM, Girbes ARJ, Weijs PJM, Oudemans-van Straaten HM (2018) Bioelectrical impedance analysis-derived phase angle at admission as a predictor of 90-day mortality in intensive care patients. Eur J Clin Nutr 72:1019–1025
PubMed
PubMed Central
Article
Google Scholar
Visser M, van Venrooij LM, Wanders DC, de Vos R, Wisselink W, van Leeuwen PA, de Mol BA (2012) The bioelectrical impedance phase angle as an indicator of undernutrition and adverse clinical outcome in cardiac surgical patients. Clin Nutr 31:981–986
PubMed
Article
Google Scholar
Buter H, Veenstra JA, Koopmans M, Boerma CE (2018) Phase angle is related to outcome after ICU admission; an observational study. Clin Nutr ESPEN 23:61–66
PubMed
Article
Google Scholar
Moonen H, van Zanten FJL, Driessen L, de Smet V, Slingerland-Boot R, Mensink M, van Zanten ARH (2021) Association of bioelectric impedance analysis body composition and disease severity in COVID-19 hospital ward and ICU patients: The BIAC-19 study. Clin Nutr 40:2328–2336
CAS
PubMed
Article
Google Scholar
Selberg O, Selberg D (2002) Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol 86:509–516
CAS
PubMed
Article
Google Scholar
Hartl WH, Jauch KW (2014) Metabolic self-destruction in critically ill patients: origins, mechanisms and therapeutic principles. Nutrition 30:261–267
PubMed
Article
Google Scholar
Bosy-Westphal A, Danielzik S, Dörhöfer RP, Later W, Wiese S, Müller MJ (2006) Phase angle from bioelectrical impedance analysis: population reference values by age, sex, and body mass index. J Parenter Enteral Nutr 30(4):309–316
Article
Google Scholar