Skip to main content
Log in

Serum IgG levels and mortality in patients with severe sepsis and septic shock

The SBITS data

Serum-IgG-Spiegel und Mortalität bei Patienten mit schwerer Sepsis und septischem Schock

Die SBITS-Daten

  • Originalien
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Abstract

Background

The role of intravenous immune globulin (Ig) therapy in patients with severe sepsis and septic shock is discussed controversially. Low initial IgG levels could help to identify those patients who might benefit from an adjunctive Ig treatment.

Objectives

To investigate the effect of initial serum IgG levels on 28-day mortality in patients with severe sepsis and septic shock.

Materials and methods

In this retrospective analysis of the SBITS trial data, 543 patients were allocated to four groups (quartiles) depending on their initial serum IgG levels (1: IgG ≤ 6.1 g/l; 2: IgG 6.2–8.4 g/l; 3: IgG 8.5–11.9 g/l; 4: IgG > 11.9 g/l). The third quartile was taken as the reference quartile. For the applied logistic regression model clinically relevant confounders were defined and integrated into further risk-adjusted calculations.

Results

Patients with the lowest IgG levels had a mortality rate similar to those patients with initial IgG levels in the second and third quartile, representing the physiological IgG range in healthy people. Surprisingly, patients with the highest IgG levels even showed a significantly higher mortality in a risk-adjusted calculation compared to the reference quartile (OR 1.69, CI 1.01–2.81, p = 0.05). Subgroup analyses revealed that initial IgG levels were of no prognostic value in patients presenting with vasopressor-dependent septic shock on admission as well as in patients with either gram-positive or gram-negative sepsis.

Conclusions

Initially low IgG levels do not discriminate between survival and nonsurvival in patients with severe sepsis and septic shock. Therefore, low IgG cannot help to identify those patients who might benefit from an adjunctive IgG sepsis therapy. Whether a high initial IgG serum level is an independent mortality risk factor needs to be investigated prospectively.

Zusammenfassung

Hintergrund

Die Rolle einer intravenösen Immunglobulin(Ig)-Therapie bei Patienten mit schwerer Sepsis und septischem Schock wird kontrovers diskutiert. Niedrige initiale IgG-Spiegel könnten dabei helfen, Patienten zu identifizieren, die von einer adjuvanten Ig-Therapie profitieren.

Fragestellung

Es wird der Einfluss der initialen IgG-Spiegel auf die 28-Tage-Mortalität bei Patienten mit schwerer Sepsis und septischem Schock untersucht.

Studiendesign und Untersuchungsmethoden

In dieser retrospektiven Analyse der SBITS-Daten wurden 543 Patienten in Abhängigkeit ihrer initialen Serum-IgG-Spiegel 4 Gruppen (Quartile) zugeordnet (1: IgG ≤ 6,1 g/l; 2: IgG 6,2–8,4 g/l; 3: IgG 8,5–11,9 g/l; 4: IgG > 11,9 g/l). Das 3. Quartil wurde als Referenzquartil angesehen. Für das verwendete logistische Regressionsmodell wurden klinisch relevante Einflussfaktoren definiert und in die weiteren risikoadjustierten Kalkulationen integriert.

Ergebnisse

Patienten mit den niedrigsten IgG-Spiegeln hatten eine den Patienten des 2. und 3. Quartils, die den physiologischen IgG-Spiegel-Bereich Gesunder repräsentiert, vergleichbare Mortalitätsrate. Überraschenderweise zeigten Patienten mit den höchsten IgG-Spiegeln in der risikoadjustierten Kalkulation sogar eine im Vergleich zum Referenzquartile statistisch signifikant höhere Mortalität (OR 1,69; CI 1,01–2,81; p = 0,05). Subgruppenanalysen zeigten, dass die initialen IgG-Spiegel ohne prognostische Aussagekraft sind, sowohl bei Patienten mit einem bei Aufnahme vasopressorenpflichtigen septischen Schock als auch bei Patienten mit grampositiver oder gramnegativer Sepsis.

Schlussfolgerung

Initial niedrige IgG-Spiegel diskrimieren nicht zwischen Überleben und Nichtüberleben bei Patienten mit schwerer Sepsis und septischem Schock. Daher können niedrige IgG-Spiegel nicht dabei helfen, Patienten zu identifizieren, die von einer adjuvanten IgG-Sepsis-Therapie profitieren. Ob ein hoher initialer IgG-Spiegel ein unabhängiger Mortalitätsrisikofaktor ist, muss prospektiv untersucht werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The results of this study have been presented in part at the annual meeting of the German and Austrian Society of Critical Care and Emergency Medicine in Hamburg, June 10–13, 2009 and at the International Symposium on Intensive Care and Emergency Medicine in Brussels, March 9–12, 2010.

References

  1. Werdan K, Pilz G, Bujdoso O et al (2007) Score-based immunoglobulin G therapy of patients with sepsis: the SBITS study. Crit Care Med 35:2693–2701

    Article  CAS  PubMed  Google Scholar 

  2. The ARDS Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  3. The ProCESS-Investigators (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370(18):1683–1693. doi:10.1056/nejmoa1401602

    Article  PubMed Central  Google Scholar 

  4. Kaukonen KM, Bailey M, Suzuki S et al (2014) Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. JAMA 311:1308–1316

    Article  CAS  PubMed  Google Scholar 

  5. Hall MJ, Williams SN, DeFrances CJ et al (2011) Inpatient care for septicemia or sepsis: a challenge for patients and hospitals. NCHS Data Brief 62:1–8

    Google Scholar 

  6. Shankar-Hari M, Spencer J, Sewell WA et al (2012) Bench-to-bedside review: immunoglobulin therapy for sepsis – biological plausibility from a critical care perspective. Crit Care 16:206

    Article  PubMed  PubMed Central  Google Scholar 

  7. Laupland KB, Kirkpatrick AW, Delaney A (2007) Polyclonal intravenous immunoglobulin for the treatment of severe sepsis and septic shock in critically ill adults: a systematic review and meta-analysis. Crit Care Med 35:2686–2692

    Article  CAS  PubMed  Google Scholar 

  8. Kreymann KG, de Heer G, Nierhaus A et al (2007) Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med 35:2677–2685

    Article  CAS  PubMed  Google Scholar 

  9. Alejandria MM, Lansang MA, Dans LF et al (2013) Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev 9:CD001090

    Google Scholar 

  10. Soares MO, Welton NJ, Harrison DA et al (2012) An evaluation of the feasibility, cost and value of information of a multicentre randomised controlled trial of intravenous immunoglobulin for sepsis (severe sepsis and septic shock): incorporating a systematic review, meta-analysis and value of information analysis. Health Technol Assess 16:1–186

    Article  CAS  PubMed Central  Google Scholar 

  11. Cafiero F, Gipponi M, Bonalumi U et al (1992) Prophylaxis of infection with intravenous immunoglobulins plus antibiotic for patients at risk for sepsis undergoing surgery for colorectal cancer: results of a randomized, multicenter clinical trial. Surgery 112:24–31

    CAS  PubMed  Google Scholar 

  12. Elebute EA, Stoner HB (1983) The grading of sepsis. Br J Surg 70:29–31

    Article  CAS  PubMed  Google Scholar 

  13. Kaul R, McGeer A, Norrby-Teglund A et al (1999) Intravenous immunoglobulin therapy for streptococcal toxic shock syndrome – a comparative observational study. The Canadian Streptococcal Study Group. Clin Infect Dis 28:800–807

    Article  CAS  PubMed  Google Scholar 

  14. Menezes MC, Benard G, Sato MN et al (1997) In vitro inhibitory activity of tumor necrosis factor alpha and interleukin-2 of human immunoglobulin preparations. Int Arch Allergy Immunol 114:323–328

    Article  CAS  PubMed  Google Scholar 

  15. Andersson J, Skansen-Saphir U, Sparrelid E et al (1996) Intravenous immune globulin affects cytokine production in T lymphocytes and monocytes/macrophages. Clin Exp Immunol 104(Suppl 1):10–20

    CAS  PubMed  Google Scholar 

  16. Andersson JP, Andersson UG (1990) Human intravenous immunoglobulin modulates monokine production in vitro. Immunology 71:372–376

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Norrby-Teglund A, Ihendyane N, Kansal R et al (2000) Relative neutralizing activity in polyspecific IgM, IgA, and IgG preparations against group A streptococcal superantigens. Clin Infect Dis 31:1175–1182

    Article  CAS  PubMed  Google Scholar 

  18. Werdan K (2001) Intravenous immunoglobulin for prophylaxis and therapy of sepsis. Curr Opin Crit Care 7:354–361

    Article  CAS  PubMed  Google Scholar 

  19. Lambris JD, Ricklin D, Geisbrecht BV (2008) Complement evasion by human pathogens. Nat Rev Microbiol 6:132–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Markiewski MM, Lambris JD (2007) The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol 171:715–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo RF, Ward PA (2005) Role of C5a in inflammatory responses. Annu Rev Immunol 23:821–852

    Article  CAS  PubMed  Google Scholar 

  22. Rieben R, Roos A, Muizert Y et al (1999) Immunoglobulin M‑enriched human intravenous immunoglobulin prevents complement activation in vitro and in vivo in a rat model of acute inflammation. Blood 93:942–951

    CAS  PubMed  Google Scholar 

  23. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637

    Article  PubMed  Google Scholar 

  24. Brocklehurst P, Farrell B, King A et al (2011) Treatment of neonatal sepsis with intravenous immune globulin. N Engl J Med 365:1201–1211

    Article  PubMed  Google Scholar 

  25. Brunkhorst FM, Gastmeier P, Kern W et al (2010) Prevention and follow-up care of sepsis. 1st revision of S2k guidelines of the German Sepsis Society (Deutsche Sepsis-Gesellschaft e. V., DSG) and the German Interdisciplinary Association of Intensive Care and Emergency Medicine (Deutsche Interdisziplinare Vereinigung fur Intensiv- und Notfallmedizin, DIVI). Internist (Berl) 51:925–932

    Article  CAS  Google Scholar 

  26. Taccone FS, Stordeur P, De Backer D et al (2009) Gamma-globulin levels in patients with community-acquired septic shock. Shock 32:379–385

    Article  CAS  PubMed  Google Scholar 

  27. Werdan K (2001) Pathophysiology of septic shock and multiple organ dysfunction syndrome and various therapeutic approaches with special emphasis on immunoglobulins. Ther Apher 5:115–122

    Article  CAS  PubMed  Google Scholar 

  28. Shankar-Hari M, Culshaw N, Post B et al (2015) Endogenous IgG hypogammaglobulinaemia in critically ill adults with sepsis: systematic review and meta-analysis. Intensive Care Med 41:1393–1401

    Article  CAS  PubMed  Google Scholar 

  29. Werdan K, Pilz G, Muller-Werdan U et al (2008) Immunoglobulin G treatment of postcardiac surgery patients with score-identified severe systemic inflammatory response syndrome – the ESSICS study. Crit Care Med 36:716–723

    Article  CAS  PubMed  Google Scholar 

  30. Päsler M, Dietz S, Werdan K (2012) Hypogammaglobulinemia in sepsis. In: Vincent J‑L (ed) Annual update in intensive care and emergency medicine 2012. Springer, Berlin, pp 98–109

    Chapter  Google Scholar 

  31. Welte T, Dellinger RP, Ebelt H et al (2015) Concept for a study design in patients with severe community-acquired pneumonia: a randomised controlled trial with a novel IGM-enriched immunoglobulin preparation – the CIGMA study. Respir Med 109:758–767

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully thank Prof. Dr. med. Dr. h.c. Dietrich Seidel, MD (former director of the Department of Clinical Chemistry, University of Munich, Munich, Germany) and Mr. Oskar Bujdoso, MS (formerly Bayer HealthCare Pharmaceuticals, Wuppertal, Germany) for their support in conducting the trial.

We also greatfully thank all SBITS Investigators (cited in [1]) for having established the SBITS study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nuding.

Ethics declarations

Conflict of interest

S. Dietz, C. Lautenschläger, G. Pilz, P. Fraunberger, M. Päsler, A.K. Walli and S. Nuding state they have no competing interest. H. Ebelt received lecture honoraria, reimbursement for congress fees and honoraria for advisory board activities of clinical studies from Biotest. U. Müller-Werdan received lecture honoraria, reimbursement of travel expenses and financial support for performing experimental and clinical studies from Biotest and Bayer. In addition, she received honoraria from Hartkopf & Schirdewahn GBR, assistenz3, Klinikum Merseburg, Helmholtz München, Tiasis business consulting and Medizinische Hochschule Hannover for scientific presentations. K. Werdan received honoraria and financial support for scientific activities, consultations and lectures from Bayer and Biotest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Redaktion

M. Buerke, Siegen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietz, S., Lautenschläger, C., Müller-Werdan, U. et al. Serum IgG levels and mortality in patients with severe sepsis and septic shock. Med Klin Intensivmed Notfmed 112, 462–470 (2017). https://doi.org/10.1007/s00063-016-0220-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-016-0220-6

Keywords

Schlüsselwörter

Navigation