Skip to main content

Advertisement

Log in

Anything but Little: a Pictorial Review on Anatomy and Pathology of the Cerebellum

  • Review Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Despite its small size the cerebellum is an anatomically complex and functionally important part of the brain. Traditionally the cerebellum is viewed as a motor control structure entirely devoted to motor control and learning, but recent functional magnetic resonance imaging (fMRI) studies demonstrated significant involvement of the cerebellum in higher order cognitive functions. The anatomical complexity of the cerebellum is reflected by the several nomenclature systems that exist for the description of cerebellar anatomy. The cerebellum can be affected by a variety of pathological processes, including congenital, infectious and inflammatory, neoplastic, vascular, degenerative and toxic metabolic diseases. The purpose of this pictorial review is to (1) provide a general overview of cerebellar anatomy and function, (2) demonstrate normal cerebellar anatomy on imaging studies, and (3) illustrate both common as well as rare pathological conditions affecting the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. Roostaei T, Nazeri A, Sahraian MA, et al. The human cerebellum: a review of physiologic neuroanatomy. Neurol Clin. 2014;32:859–69. https://doi.org/10.1016/j.ncl.2014.07.013.

    Article  PubMed  Google Scholar 

  2. Schmahmann JD, Doyon J, McDonald D, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage. 1999;10:233–60. https://doi.org/10.1006/nimg.1999.0459.

    Article  CAS  PubMed  Google Scholar 

  3. Voogd J, Nieuwenhuys R. The human central nervous system. Springer; 1988. pp. 807–34.

    Google Scholar 

  4. Courchesne E, Press GA, Murakami J, et al. The cerebellum in sagittal plane—anatomic-MR correlation: 1. The vermis. AJR Am J Roentgenol. 1989;153:829–35. https://doi.org/10.2214/ajr.153.4.829.

    Article  CAS  PubMed  Google Scholar 

  5. Press GA, Murakami J, Courchesne E, et al. The cerebellum in sagittal plane—anatomic-MR correlation: 2. The cerebellar hemispheres. AJR Am J Roentgenol. 1989;53:837–46. https://doi.org/10.2214/ajr.153.4.837.

    Article  Google Scholar 

  6. Press GA, Murakami JW, Courchesne E, et al. The cerebellum: 3. Anatomic-MR correlation in the coronal plane. AJR Am J Roentgenol. 1990;154:593–602. https://doi.org/10.2214/ajr.154.3.2106226.

    Article  CAS  PubMed  Google Scholar 

  7. Sereno MI, Diedrichsen J, Tachrount M, et al. The human cerebellum has almost 80 % of the surface area of the neocortex. Proc Natl Acad Sci USA. 2020;117:19538–43. https://doi.org/10.1073/pnas.2002896117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Cocker LJ, Lövblad KO, Hendrikse J. MRI of cerebellar infarction. Eur Neurol. 2017;77:137–46. https://doi.org/10.1159/000455229.

    Article  PubMed  Google Scholar 

  9. Hartkamp NS, De Cocker LJ, Helle M, et al. In vivo visualization of the PICA perfusion territory with super-selective pseudo-continuous arterial spin labeling MRI. Neuroimage. 2013;83:58–65. https://doi.org/10.1016/j.neuroimage.2013.06.070.

    Article  PubMed  Google Scholar 

  10. Klein AP, Ulmer JL, Quinet SA, et al. Nonmotor functions of the cerebellum: an introduction. AJNR Am J Neuroradiol. 2016;37:1005–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Acosta-Cabronero J, Betts MJ, Cardenas-Blanco A, et al. In vivo MRI mapping of brain iron deposition across the adult lifespan. J Neurosci. 2016;36:364–74. https://doi.org/10.1523/JNEUROSCI.1907-15.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mallio CA, Quattrocchi CC, Rovira À, et al. Gadolinium deposition safety: seeking the patient’s perspective. AJNR Am J Neuroradiol. 2020;41:944–6. https://doi.org/10.3174/ajnr.A6586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wright J, Huang C, Strbian D, et al. Diagnosis and management of acute cerebellar infarction. Stroke. 2014;45:e56–e8. https://doi.org/10.1161/STROKEAHA.114.004474.

    Article  Google Scholar 

  14. De Cocker LJ, Geerlings MI, Hartkamp NS, SMART study group, et al. Cerebellar infarct patterns: the SMART-medea study. Neuroimage Clin. 2015;8:314–21. https://doi.org/10.1016/j.nicl.2015.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wright JN, Shaw DWW, Ishak G, et al. Cerebellar watershed injury in children. Ajnr Am J Neuroradiol. 2020;41:923–8. https://doi.org/10.3174/ajnr.A6532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Cocker LJL, Hendrikse J. Depth-of-fissure cerebellar infarcts in adults. Ajnr Am J Neuroradiol. 2020;4:E60. https://doi.org/10.3174/ajnr.A6626.

    Article  Google Scholar 

  17. De Cocker LJ, Kloppenborg RP, van der Graaf Y, et al. Cerebellar cortical infarct cavities: correlation with risk factors and MRI markers of cerebrovascular disease. Stroke. 2015;46:3154–60. https://doi.org/10.1161/STROKEAHA.115.010093.

    Article  CAS  PubMed  Google Scholar 

  18. De Cocker LJ, Compter A, Kappelle LJ, et al. Cerebellar cortical infarct cavities and vertebral artery disease. Neuroradiology. 2016;58:853–7. https://doi.org/10.1007/s00234-016-1707-9.

    Article  PubMed  Google Scholar 

  19. Ter Schiphorst A, Tatu L, Thijs V, et al. Small obliquely oriented cortical cerebellar infarctions are associated with cardioembolic stroke. BMC Neurol. 2019;19:100. https://doi.org/10.1186/s12883-019-1328-0.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Datar S, Rabinstein AA. Cerebellar hemorrhage. Neurol Clin. 2014;32:993–1007. https://doi.org/10.1016/j.ncl.2014.07.006.

    Article  PubMed  Google Scholar 

  21. Pasi M, Marini S, Morotti A, et al. Cerebellar hematoma location: implications for the underlying microangiopathy. Stroke. 2018;49:207–10. https://doi.org/10.1161/STROKEAHA.117.019286.

    Article  PubMed  Google Scholar 

  22. Negro A, Somma F, Piscitelli V, et al. Intracranial hemorrhage from dural arteriovenous fistulas: what can we find with CT angiography? Tomography. 2021;7:804–14. https://doi.org/10.3390/tomography7040068.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Amini A, Osborn AG, McCall TD, et al. Remote cerebellar hemorrhage. AJNR Am J Neuroradiol. 2006;27:387–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rossi A, Martinetti C, Morana G, et al. Neuroimaging of infectious and inflammatory diseases of the pediatric cerebellum and brainstem. Neuroimaging Clin N Am. 2016;26:471–87. https://doi.org/10.1016/j.nic.2016.03.011.

    Article  PubMed  Google Scholar 

  25. Pruitt AA. Infections of the cerebellum. Neurol Clin. 2014;32:1117–31. https://doi.org/10.1016/j.ncl.2014.07.009.

    Article  PubMed  Google Scholar 

  26. Kayaaslan BU, Akinci E, Bilen S, et al. Listerial rhombencephalitis in an immunocompetent young adult. Int J Infect Dis. 2009;13:e65–7. https://doi.org/10.1016/j.ijid.2008.06.026.

    Article  PubMed  Google Scholar 

  27. Loehrer PA, Zieger L, Simon OJ. Update on paraneoplastic cerebellar degeneration. Brain Sci. 2021;11:1414. https://doi.org/10.3390/brainsci11111414.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Napolitano M, Ranieri A, Alfieri G, et al. Paraneoplastic cerebellar degeneration associated with anti-Yo antibodies appearing as a leptomeningeal cerebellar carcinomatosis at MRI: a case report. SN Compr Clin Med. 2021;3:2329–31. https://doi.org/10.1007/s42399-021-01002-2.

    Article  Google Scholar 

  29. Fredriksen JR, Carr CM, Koeller KK, et al. MRI findings in glutamic acid decarboxylase associated autoimmune epilepsy. Neuroradiology. 2018;60:239–45.

    Article  PubMed  Google Scholar 

  30. Dudesek A, Rimmele F, Tesar S, et al. CLIPPERS: chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids. Review of an increasingly recognized entity within the spectrum of inflammatory central nervous system disorders. Clin Exp Immunol. 2014;175:385–96. https://doi.org/10.1111/cei.12204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Obeidat AZ, Block AN, Hooshmand SI. “Peppering the pons”: CLIPPERS or myelin oligodendrocyte glycoprotein associated disease? Mult Scler Relat Disord. 2021;51:102874. https://doi.org/10.1016/j.msard.2021.102874.

    Article  CAS  PubMed  Google Scholar 

  32. Bag AK, Curé JK, Chapman PR, et al. JC virus infection of the brain. AJNR Am J Neuroradiol. 2010;31:1564–76. https://doi.org/10.3174/ajnr.A2035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adra N, Goodheart AE, Rapalino O, et al. MRI shrimp sign in cerebellar progressive multifocal leukoencephalopathy: description and validation of a novel observation. AJNR Am J Neuroradiol. 2021;42:1073–9. https://doi.org/10.3174/ajnr.A7145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wijburg MT, van Oosten BW, Murk JL, et al. Heterogeneous imaging characteristics of JC virus granule cell neuronopathy (GCN): a case series and review of the literature. J Neurol. 2015;262:65–73. https://doi.org/10.1007/s00415-014-7530-5.

    Article  PubMed  Google Scholar 

  35. Mitoma H, Manto M, Shaikh AG. Mechanisms of ethanol-induced cerebellar ataxia: underpinnings of neuronal death in the cerebellum. Int J Environ Res Public Health. 2021;18:8678. https://doi.org/10.3390/ijerph18168678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Oliveira AM, Paulino MV, Vieira APF, et al. Imaging patterns of toxic and metabolic brain disorders. Radiographics. 2019;39:1672–95. https://doi.org/10.1148/rg.2019190016.

    Article  PubMed  Google Scholar 

  37. Algahtani H, Shirah B, Alqahtani AJ, et al. Irreversible cerebellar atrophy as a complication of short-term phenytoin exposure: clinical improvement following discontinuation of the culprit. J Epilepsy Res. 2020;10:96–9. https://doi.org/10.14581/jer.20016.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huang BY, Castillo M. Hypoxic-ischemic brain injury: imaging findings from birth to adulthood. Radiographics. 2008;28:417–39.

    Article  PubMed  Google Scholar 

  39. McKinney AM, Short J, Truwit CL, et al. Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings. AJR Am J Roentgenol. 2007;189:904–12. https://doi.org/10.2214/AJR.07.2024.

    Article  PubMed  Google Scholar 

  40. Belfkih R, Khayat OG, Berkaoui A, et al. Crossed cerebellar diaschisis in the setting of a convulsive status epilepticus: a rare clinical and radiological entity. Radiol Case Rep. 2021;16:2913–5. https://doi.org/10.1016/j.radcr.2021.06.092.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Steinlin M, Blaser S, Boltshauser E. Cerebellar involvement in metabolic disorders: a pattern-recognition approach. Neuroradiology. 1998;40:347–54. https://doi.org/10.1007/s002340050597.

    Article  CAS  PubMed  Google Scholar 

  42. Poretti A, Wolf NI, Boltshauser E. Differential diagnosis of cerebellar atrophy in childhood: an update. Neuropediatrics. 2015;46:359–70. https://doi.org/10.1055/s-0035-1564620.

    Article  PubMed  Google Scholar 

  43. Finsterer J, Zarrouk-Mahjoub S. Cerebellar atrophy is common among mitochondrial disorders. Metab Brain Dis. 2018;33:987–8. https://doi.org/10.1007/s11011-018-0238-y.

    Article  PubMed  Google Scholar 

  44. Okamoto K, Tokiguchi S, Furusawa T, et al. MR features of diseases involving bilateral middle cerebellar peduncles. AJNR Am J Neuroradiol. 2003;24:1946–54.

    PubMed  PubMed Central  Google Scholar 

  45. Kurokawa R, Kurokawa M, Mitsutake A, et al. Clinical and neuroimaging review of triplet repeat diseases. Jpn J Radiol. 2003;41:115–30. https://doi.org/10.1007/s11604-022-01343-5.

    Article  Google Scholar 

  46. Cocozza S, Pontillo G, De Michele G, et al. Conventional MRI findings in hereditary degenerative ataxias: a pictorial review. Neuroradiology. 2021;63:983–99. https://doi.org/10.1007/s00234-021-02682-2.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shribman S, Reid E, Crosby AH, et al. Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol. 2019;18:1136–46. https://doi.org/10.1016/S1474-4422(19)30235-2.

    Article  CAS  PubMed  Google Scholar 

  48. Scola E, Ganau M, Robinson R, et al. Neuroradiological findings in three cases of pontocerebellar hypoplasia type 9 due to AMPD2 mutation: typical MRI appearances and pearls for differential diagnosis. Quant Imaging Med Surg. 2019;9:1966–72. https://doi.org/10.21037/qims.2019.08.12.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bosemani T, Orman G, Boltshauser E, et al. Congenital abnormalities of the posterior fossa. Radiographics. 2015;35:200–20. https://doi.org/10.1148/rg.351140038.

    Article  PubMed  Google Scholar 

  50. Primary familial brain calcification.. https://www.ncbi.nlm.nih.gov/books/NBK1421/. Accessed 11 Apr 2014.

  51. Perugula ML, Lippmann S. Fahr’s disease or Fahr’s syndrome? Innov Clin Neurosci. 2016;13:45–6.

    PubMed  PubMed Central  Google Scholar 

  52. Kim EH, Moon JH, Kang SG, et al. Diagnostic challenges of posterior fossa hemangioblastomas: refining current radiological classification scheme. Sci Rep. 2020;10:6267. https://doi.org/10.1038/s41598-020-63207-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hur H, Jung S, Jung TY, et al. Cerebellar glioblastoma multiforme in an adult. J Korean Neurosurg Soc. 2008;43:194–7. https://doi.org/10.3340/jkns.2008.43.4.194.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Perreault S, Ramaswamy V, Achrol AS, et al. MRI surrogates for molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol. 2014;35:1263–9. https://doi.org/10.3174/ajnr.A3990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Keil VC, Warmuth-Metz M, Reh C, et al. Imaging biomarkers for adult medulloblastomas: genetic entities may be identified by their MR imaging radiophenotype. AJNR Am J Neuroradiol. 2017;38:1892–8. https://doi.org/10.3174/ajnr.A5313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Poretti A, Bosemani T. Cystic malformations within the posterior fossa. Curr Radiol Rep. 2016;4:17. https://doi.org/10.1007/s40134-016-0147-y.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Johannes Devos, Department of Radiology, UZ Gasthuiberg Leuven, Belgium and Dr. Sofie van Cauter Department of Radiologie, Ziekenhuis Oost-Limburg (ZOL) Genk, Belgium for providing cases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Dekeyzer.

Ethics declarations

Conflict of interest

S. Dekeyzer, S. Vanden Bossche and L. De Cocker declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekeyzer, S., Vanden Bossche, S. & De Cocker, L. Anything but Little: a Pictorial Review on Anatomy and Pathology of the Cerebellum. Clin Neuroradiol 33, 907–929 (2023). https://doi.org/10.1007/s00062-023-01326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-023-01326-7

Keywords

Navigation