Skip to main content
Log in

Diffusion-Tensor Tractography of the Auditory Neural Pathway

Clinical Usefulness in Patients with Unilateral Sensorineural Hearing Loss

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate the structural integrity of the auditory neural pathway in patients with unilateral sensorineural hearing loss using quantitative diffusion-tensor tractography.

Methods

Diffusion-tensor tractography imaging was performed using a 3T magnetic resonance imaging system to evaluate structural alterations in the auditory neural pathway of patients with unilateral sensorineural hearing loss. The two diffusion-tensor tractography parameters, fractional anisotropy and the apparent diffusion coefficient were compared between the ipsilateral side and the contralateral side in patients and controls. Additionally, correlations between the parameter values and the hearing loss level in patients were evaluated.

Results

A total of 24 sensorineural hearing loss patients (14 males; age range, 17–65 years; average age, 45.3 years) and 24 age and sex-matched control subjects were enrolled. Fractional anisotropy values on the ipsilateral and contralateral sides were significantly lower in patients than in the control group (p = 0.004 and 0.001, respectively). The differences in the apparent diffusion coefficient values for the ipsilateral and contralateral sides between the two groups were not significant (p = 0.279 and 0.248, respectively). There was an inverse relationship between fractional anisotropy and the severity of hearing impairment on the ipsilateral and contralateral sides (r = −0.519, p = 0.005 and r = −0.454, p = 0.015, respectively). No significant correlation was found between the apparent diffusion coefficient and hearing loss level on the ipsilateral and contralateral sides (r = 0.172, p = 0.380 and r = 0.131, p = 0.508, respectively).

Conclusion

Quantitative diffusion-tensor tractography can be used to detect microstructural alterations in the auditory neural pathway in sensorineural hearing loss patients with normal results in standard imaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vasama JP, Mäkelä JP, Pyykkö I, Hari R. Abrupt unilateral deafness modifies function of human auditory pathways. Neuroreport. 1995;6:961–4.

    Article  CAS  Google Scholar 

  2. Swartz J. Sensorineural hearing deficit: A systematic approach based on imaging findings. Radiographics. 1996;16:561–74.

    Article  CAS  Google Scholar 

  3. Neil J, Miller J, Mukherjee P, Hüppi PS. Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR Biomed. 2002;15:543–52.

    Article  CAS  Google Scholar 

  4. Mukherjee P, Miller JH, Shimony JS, Philip JV, Nehra D, Snyder AZ, Conturo TE, Neil JJ, McKinstry RC. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol. 2002;23:1445–56.

    PubMed  Google Scholar 

  5. O’Donnell LJ, Westin CF. An introduction to diffusion tensor image analysis. Neurosurg Clin N Am. 2011;22:185–96.

    Article  Google Scholar 

  6. Lin Y, Wang J, Wu C, Wai Y, Yu J, Ng S. Diffusion tensor imaging of the auditory pathway in sensorineural hearing loss: Changes in radial diffusivity and diffusion anisotropy. J Magn Reson Imaging. 2008;28:598–603.

    Article  Google Scholar 

  7. Wu CM, Ng SH, Wang JJ, Liu TC. Diffusion tensor imaging of the subcortical auditory tract in subjects with congenital cochlear nerve deficiency. AJNR Am J Neuroradiol. 2009;30:1773–7.

    Article  Google Scholar 

  8. Chang Y, Lee SH, Lee YJ, Hwang MJ, Bae SJ, Kim MN, Lee J, Woo S, Lee H, Kang DS. Auditory neural pathway evaluation on sensorineural hearing loss using diffusion tensor imaging. Neuroreport. 2004;15:1699–703.

    Article  Google Scholar 

  9. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265–9.

    Article  CAS  Google Scholar 

  10. Mangin JF, Poupon C, Clark C, Le Bihan D, Bloch I. Distortion correction and robust tensor estimation for MR diffusion imaging. Med Image Anal. 2002;6:191–8.

    Article  Google Scholar 

  11. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. Diffusion tensor imaging: Concepts and applications. J Magn Reson Imaging. 2001;13:534–46.

    Article  Google Scholar 

  12. Stadlbauer A, Salomonowitz E, Strunk G, Hammen T, Ganslandt O. Quantitative diffusion tensor fiber tracking of age-related changes in the limbic system. Eur Radiol. 2008;18:130–7.

    Article  Google Scholar 

  13. Mori S, van Zijl PC. Fiber tracking: Principles and strategies—a technical review. NMR Biomed. 2002;15:468–80.

    Article  Google Scholar 

  14. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4:316–29.

    Article  Google Scholar 

  15. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111:209–19.

    Article  CAS  Google Scholar 

  16. Gabriele ML, Brunso-Bechtold JK, Henkel CK. Plasticity in the development of afferent patterns in the inferior colliculus of the rat after unilateral cochlear ablation. J Neurosci. 2000;20:6939–49.

    Article  CAS  Google Scholar 

  17. Franklin SR, Brunso-Bechtold JK, Henkel CK. Unilateral cochlear ablation before hearing onset disrupts the maintenance of dorsal nucleus of the lateral lemniscus projection patterns in the rat inferior colliculus. Neuroscience. 2006;143:105–15.

    Article  CAS  Google Scholar 

  18. Wang JY, Bakhadirov K, Devous MD Sr, Abdi H, McColl R, Moore C, Marquez de la Plata CD, Ding K, Whittemore A, Babcock E, Rickbeil T, Dobervich J, Kroll D, Dao B, Mohindra N, Madden CJ, Diaz-Arrastia R. Diffusion tensor tractography of traumatic diffuse axonal injury. Arch Neurol. 2008;65:619–26.

    PubMed  Google Scholar 

  19. Gaetz M. The neurophysiology of brain injury. Clin Neurophysiol. 2004;115:4–18.

    Article  CAS  Google Scholar 

  20. Wilson S, Raghupathi R, Saatman KE, MacKinnon MA, McIntosh TK, Graham DI. Continued in situ DNA fragmentation of microglia/macrophages in white matter weeks and months after traumatic brain injury. J Neurotrauma. 2004;21:239–50.

    Article  Google Scholar 

  21. Bigler ED. Distinguished Neuropsychologist Award Lecture 1999: The lesion(s) in traumatic brain injury: Implications for clinical neuropsychology. Arch Clin Neuropsychol. 2001;16:95–131.

    Article  CAS  Google Scholar 

  22. Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging. 2006;24:478–88.

    Article  Google Scholar 

  23. Jaermann T, Crelier G, Pruessmann KP, Golay X, Netsch T, Van Muiswinkel AM, Mori S, van Zijl PC, Valavanis A, Kollias S, Boesiger P. SENSE-DTI at 3T. Magn Reson Med. 2004;51:230–6.

    Article  CAS  Google Scholar 

  24. Fujiwara S, Sasaki M, Kanbara Y, Matsumura Y, Shibata E, Inoue T, Nishimoto H, Ogawa A. Improvement of geometric distortion in coronal diffusion-weighted and diffusion tensor imaging by using a whole-brain isotropic-voxel acquisition technique at 3 tesla. Magn Reson Med Sci. 2007;6:127–32.

    Article  Google Scholar 

  25. Kabasawa H, Masutani Y, Aoki S, Abe O, Masumoto T, Hayashi N, Ohtomo K. 3T PROPELLER diffusion tensor fiber tractography: A feasibility study for cranial nerve fiber tracking. Radiat Med. 2007;25:462–6.

    Article  Google Scholar 

  26. Husain FT, Medina RE, Davis CW, Szymko-Bennett Y, Simonyan K, Pajor NM, Horwitz B. Neuroanatomical changes due to hearing loss and chronic tinnitus: A combined VBM and DTI study. Brain Res. 2011;1369:74–88.

    Article  CAS  Google Scholar 

  27. Seydell-Greenwald A, Raven EP, Leaver AM, Turesky TK, Rauschecker JP. Diffusion imaging of auditory and auditory-limbic connectivity in tinnitus: Preliminary evidence and methodological challenges. Neural Plast. 2014;2014:145943.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dong-A University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyeon Kim.

Ethics declarations

Conflict of interest

S. Kim, H.J. Kwon, E.-J. Kang and D.W. Kim declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kwon, H.J., Kang, EJ. et al. Diffusion-Tensor Tractography of the Auditory Neural Pathway. Clin Neuroradiol 30, 115–122 (2020). https://doi.org/10.1007/s00062-018-0733-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-018-0733-x

Keywords

Navigation