Skip to main content

Advertisement

Log in

Auditory Pathway Features Determined by DTI in Subjects with Unilateral Acoustic Neuroma

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

In the studies concerning the pathology of the auditory pathway in the vestibulocochlear system, few use advanced neuroimaging applications of magnetic resonance imaging (MRI) such as diffusion tensor imaging (DTI). Those who did use reported DTI changes only at the lateral lemniscus and inferior colliculus level. The aim of our study was to determine diffusion changes in the bilateral auditory pathways of subjects with unilateral acoustic neuroma (AN) and compare them with healthy controls.

Material and Methods

A total of 15 subjects with unilateral AN along with 11 controls underwent routine MRI and DTI. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values obtained from the lateral lemniscus, inferior colliculus, corpus geniculatum mediale, and Heschl’s gyrus of the auditory pathway were then compared.

Results

The subjects’ ADC values measured from the contralateral side were significantly higher at the lateral lemniscus, inferior colliculus, and corpus geniculatum mediale compared with those of the controls. Also, decreased FA values were noted at the inferior colliculus for both the contralateral and ipsilateral sides. The highest ADC values were detected in the inferior colliculus of the auditory pathway.

Conclusions

In the auditory pathway of subjects with AN, the contralateral side is more affected than the ipsilateral side, the most affected region being the inferior colliculus. DTI is an advanced neuroimaging technique that can be used to determine the presence of microstructural damage to the auditory pathway in subjects with AN, whereas conventional MRI is not sensitive enough to detect damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Salzman KL, Davidson HC, Harnsberger HR, Glastonbury CM, Wiggins RH, Ellul S, Shelton C. Dumbbell schwannomas of the internal auditory canal. AJNR Am J Neuroradiol. 2001;22:1368–76.

    CAS  PubMed  Google Scholar 

  2. Arthurs BJ, Fairbanks RK, Demakas JJ, Lamoreaux WT, Giddings NA, Mackay AR, Cooke BS, Elaimy AL, Lee CM. A review of treatment modalities for vestibular schwannoma. Neurosurg Rev. 2011;34:265–77.

    Article  PubMed  Google Scholar 

  3. Fortnum H, O’Neill C, Taylor R, Lenthall R, Nikolopoulos T, Lightfoot G, O’Donoghue G, Mason S, Baguley D, Jones H, Mulvaney C. The role of magnetic resonance imaging in the identification of suspected acoustic neuroma: a systematic review of clinical and cost effectiveness and natural history. Health Technol Assess. 2009;13:1–154.

    Article  Google Scholar 

  4. Suzuki M, Hashimoto S, Kano S, Okitsu T. Prevalence of acoustic neuroma associated with each configuration of pure tone audiogram in patients with asymmetric sensorineural hearing loss. Ann Otol Rhinol Laryngol. 2010;119:615–18.

    PubMed  Google Scholar 

  5. Day AS, Wang CT, Chen CN, Young YH. Correlating the cochleovestibular deficits with tumor size of acoustic neuroma. Acta Otolaryngol. 2008;128:756–60.

    Article  PubMed  Google Scholar 

  6. Mark AS, Seltzer S, Harnsberger HR. Sensorineural hearing loss: more than meets the eye? AJNR Am J Neuroradiol. 1993;14:37–45.

    CAS  PubMed  Google Scholar 

  7. Gebarski SS, Tucci DL, Telian SA. The cochlear nuclear complex: MR location and abnormalities. AJNR Am J Neuroradiol. 1993;14:1311–8.

    CAS  PubMed  Google Scholar 

  8. Welling DB, Glasscock ME, 3rd, Woods CI, Jackson CG. Acoustic neuroma: a cost-effective approach. Otolaryngol Head Neck Surg. 1990;103:364–70.

    Article  CAS  PubMed  Google Scholar 

  9. Chang Y, Lee SH, Lee YJ, Hwang MJ, Bae SJ, Kim MN, Lee J, Woo S, Lee H, Kang DS. Auditory neural pathway evaluation on sensorineural hearing loss using diffusion tensor imaging. Neuroreport. 2004;15:1699–703.

    Article  PubMed  Google Scholar 

  10. Lin Y, Wang J, Wu C, Wai Y, Yu J, Ng S. Diffusion tensor imaging of the auditory pathway in sensorineural hearing loss: changes in radial diffusivity and diffusion anisotropy. J Magn Reson Imaging. 2008;28:598–603.

    Article  PubMed  Google Scholar 

  11. Wu CM, Ng SH, Liu TC. Diffusion tensor imaging of the subcortical auditory tract in subjects with long-term unilateral sensorineural hearing loss. Audiol Neurootol. 2009;14:248–53.

    Article  PubMed  Google Scholar 

  12. Taiwo O, Galusha D, Tessier-Sherman B, Kirsche S, Cantley L, Slade MD, Cullen MR, Donoghue AM. Acoustic neuroma: potential risk factors and audiometric surveillance in the aluminium industry. Occup Environ Med. 2014;71:624–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lin D, Hegarty JL, Fischbein NJ, Jackler RK. The prevalence of “incidental” acoustic neuroma. Arch Otolaryngol Head Neck Surg. 2005;131:241–4.

    Article  PubMed  Google Scholar 

  14. Yoshiura T, Higano S, Rubio A, Shrier DA, Kwok WE, Iwanaga S, Numaguchi Y. Heschl and superior temporal gyri: low signal intensity of the cortex on T2-weighted MR images of the normal brain. Radiology. 2000;214:217–21.

    Article  CAS  PubMed  Google Scholar 

  15. Bernal B, Altman NR. Auditory functional MR imaging. AJR Am J Roentgenol. 2001;176:1009–15.

    Article  CAS  PubMed  Google Scholar 

  16. de Bode S, Sininger Y, Healy EW, Mathern GW, Zaidel E. Dichotic listening after cerebral hemispherectomy: methodological and theoretical observations. Neuropsychologia. 2007;45:2461–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Khosla D, Ponton CW, Eggermont JJ, Kwong B, Don M, Vasama JP. Differential ear effects of profound unilateral deafness on the adult human central auditory system. J Assoc Res Otolaryngol. 2003;4:235–49.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Langers DR, van Dijk, Backes WH. Lateralization, connectivity and plasticity in the human central auditory system. Neuroimage. 2005;28:490–9.

  19. Jäncke L, Wüstenberg T, Schulze K, Heinze HJ. Asymmetric hemodynamic responses of the human auditory cortex to monaural and binaural stimulation. Hear Res. 2002;170:166–78.

    Article  PubMed  Google Scholar 

  20. Lin Y, Wang J, Wu C, Wai Y, Yu J, Ng S. Diffusion tensor imaging of the auditory pathway in sensorineural hearing loss: changes in radial diffusivity and diffusion anisotropy. J Magn Reson Imaging. 2008;28:598–603.

    Article  PubMed  Google Scholar 

  21. Wu CM, Ng SH, Wang JJ, Liu TC. Diffusion tensor imaging of the subcortical auditory tract in subjects with congenital cochlear nerve deficiency. AJNR Am J Neuroradiol. 2009;30:1773–7.

    Article  PubMed  Google Scholar 

  22. Mukherjee P, Miller JH, Shimony JS, Philip JV, Nehra D, Snyder AZ, Conturo TE, Neil JJ, McKinstry RC. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol. 2002;23:1445–56.

    PubMed  Google Scholar 

  23. Nakayama N, Okumura A, Shinoda J, Yasokawa YT, Miwa K, Yoshimura SI, Iwama T. Evidence for white matter disruption in traumatic brain injury without macroscopic lesions. J Neurol Neurosurg Psychiatry. 2006;77:850–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin YC, Wang CC, Wai YY, Wan YL, Ng SH, Chen YL, Liu HL, Wang JJ. Significant temporal evolution of diffusion anisotropy for evaluating early response to radiosurgery in patients with vestibular schwannoma: findings from functional diffusion maps. AJNR Am J Neuroradiol. 2010;31:269–74.

    Article  PubMed  Google Scholar 

  25. Anderson RA, Knight PL, Merzenich MM. The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AAF) in the cat: evidence for two largely segregated systems of connections. J Comp Neurol. 1980;194:663–701.

    Article  Google Scholar 

  26. Bruckner S, Rübsamen R. Binaural response characteristics in isofrequency sheets of the gerbil inferior colliculus. Hear Res. 1995;86:1–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the contributions and editorial assistance by S. Delacroix, a native speaker of English.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kurtcan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurtcan, S., Alkan, A., Kilicarslan, R. et al. Auditory Pathway Features Determined by DTI in Subjects with Unilateral Acoustic Neuroma. Clin Neuroradiol 26, 439–444 (2016). https://doi.org/10.1007/s00062-015-0385-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-015-0385-z

Keywords

Navigation