Skip to main content

Advertisement

Log in

Role of Diffusion Tensor MR Imaging in Degenerative Cervical Spine Disease: a Review of the Literature

  • Review Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

In the article we review the current role of diffusion tensor imaging (DTI), a modern magnetic resonance (MR) technique, in the diagnosis and the management of cervical spondylotic myelopathy (CSM), the most serious complication of degenerative cervical spine disease (DCSD). The pathogenesis of DCSD is presented first with an emphasis placed on the pathological processes leading to myelopathy development. An understanding of the pathophysiological background of DCSD is necessary for appropriate interpretation of MR images, both plain and DTI. Conventional MRI is currently the imaging modality of choice in DCSD and provides useful information concerning the extent of spondylotic changes and degree of central spinal canal stenosis; however its capability in myelopathy detection is limited. DTI is a state of the art imaging method which recently has emerged in spinal cord investigations and has the potential to detect microscopic alterations which are beyond the capability of plain MRI. In the article we present the physical principles underlying DTI which determine its sensitivity, followed by an overview of technical aspects of DTI acquisition with a special consideration of spinal cord imaging. Finally, the scientific reports concerning DTI utility in DSCD are also reviewed. DTI detects spinal cord injury in the course of DCSD earlier than any other method and could be useful in predicting surgical outcomes in CMS patients, however technical and methodology improvement as well as standardization of acquisition protocols and postprocessing methods among the imaging centers are needed before its implementation in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Todd AG. Cervical spine: degenerative conditions. Curr Rev Musculoskelet Med. 2011;4:168–74.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Banaszek A, Bladowska J, Szewczyk P, Podgórski P, Sąsiadek M. Usefulness of diffusion tensor MR imaging in the assessment of intramedullary changes of the cervical spinal cord in different stages of degenerative spine disease. Eur Spine J. 2014;23:1523–30.

    Article  PubMed  Google Scholar 

  3. Demir A, Ries M, Moonen CT, Vital JM, Dehais J, Arne P, Caillé JM, Dousset V. Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology. 2013;229:37–43.

    Article  Google Scholar 

  4. Mattei TA, Goulart CR, Milano JB, Dutra LP, Fasset DR. Cervical spondylotic myelopathy: pathophysiology, diagnosis, and surgical techniques. ISRN Neurol. 2011;2011:463729.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Matsuda Y, Miyazaki K, Tada K, Yasuda A, Nakayama T, Murakami H, Matsuo M. Increased MR signal intensity due to cervical myelopathy. Analysis of 29 surgical cases. J Neurosurg. 1991;74:887–92.

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi M, Yamashita Y, Sakamoto Y, Kojima R. Chronic cervical cord compression: clinical significance of increased signal intensity on MR images. Radiology. 1989;173:219–24.

    Article  CAS  PubMed  Google Scholar 

  7. Matsumoto M, Toyama Y, Ishikawa M, Chiba K, Suzuki N, Fujimura Y. Increased signal intensity of the spinal cord on magnetic resonance images in cervical compressive myelopathy. Does it predict the outcome of conservative treatment? Spine. 2000;25:677–82.

    Article  CAS  PubMed  Google Scholar 

  8. Xiangshui M, Xiangjun C, Xiaoming Z, Qingshi Z, Yi C, Chuanqiang Q, Xiangxing M, Chuanfu L, Jinwen H. 3 T magnetic resonance diffusion tensor imaging and fiber tracking in cervical myelopathy. Clin Radiol. 2010;65:465–73.

    Article  CAS  PubMed  Google Scholar 

  9. Sasiadek MJ, Bladowska J. Imaging of degenerative spine disease–the state of the art. Adv Clin Exp Med. 2012;21:133–42.

    PubMed  Google Scholar 

  10. Yarbrough CK, Murphy RK, Ray WZ, Stewart TJ. The natural history and clinical presentation of cervical spondylotic myelopathy. Adv Orthop. 2012;2012:480643.

    Article  PubMed  Google Scholar 

  11. Salvi FJ, Jones JC, Weigert BJ. The assessment of cervical myelopathy. Spine J. 2006;6:182–9.

    Article  Google Scholar 

  12. Inamasu J, Guiot BH, Sachs DC. Ossification of the posterior longitudinal ligament: an update on its biology, epidemiology, and natural history. Neurosurgery. 2006;58:1027–39.

    Article  PubMed  Google Scholar 

  13. Baptiste DC, Fehlings MG. Pathophysiology of cervical myelopathy. Spine J. 2006;6:190–7.

    Article  Google Scholar 

  14. Bohlman HH, Emery SE. The pathophysiology of cervical spondylosis and myelopathy. Spine. 1988;13:843–6.

    Article  CAS  PubMed  Google Scholar 

  15. Fehlings MG, Skaf G. A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine. 1998;23:2730–7.

    Article  CAS  PubMed  Google Scholar 

  16. Morishita Y, Naito M, Hymanson H, Miyazaki M, Wu G, Wang JC. The relationship between the cervical spinal canal diameter and the pathological changes in the cervical spine. Eur Spine J. 2009;18:877–83.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Muhle C, Metzner J, Weinert D, Falliner A, Brinkmann G, Mehdorn MH, Heller M, Resnic D. Classification system based on kinematic MR imaging in cervical spondylitic myelopathy. AJNR Am J Neuroradiol. 1998;19:1763–71.

    CAS  PubMed  Google Scholar 

  18. Kim DH, Vaccaro AR, Henderson FC, Benzel EC. Molecular biology of cervical myelopathy and spinal cord injury: role of oligodendrocyte apoptosis. Spine J. 2003;3:510–9.

    Article  PubMed  Google Scholar 

  19. Ito T, Oyanagi K, Takahashi H, Takahashi HE, Ikuta F. Cervical spondylotic myelopathy. Clinicopathologic study on the progression pattern and thin myelinated fibers of the lesions of seven patients examined during complete autopsy. Spine. 1996;21:827–33.

    Article  CAS  PubMed  Google Scholar 

  20. Mink JH, Gordon RE, Deutsch AL. The cervical spine: radiologist’s perspective. Phys Med Rehabil Clin N Am. 2003;14:493–548.

    Article  PubMed  Google Scholar 

  21. Fried LC, Doppman JL, Di Chiro G. Direction of blood flow in the primate cervical spinal cord. J Neurosurg. 1970;33:325–30.

    Article  CAS  PubMed  Google Scholar 

  22. Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med. 1997;3:73–6.

    Article  CAS  PubMed  Google Scholar 

  23. Breig A, Turnbull I, Hassler O. Effects of mechanical stresses on the spinal cord in cervical spondylosis. A study on fresh cadaver material. J Neurosurg. 1966;25:45–56.

    Article  CAS  PubMed  Google Scholar 

  24. Gledhill RF, Harrison BM, McDonald WI. Demyelination and remyelination after acute spinal cord compression. Exp Neurol. 1973;38:472–87.

    Article  CAS  PubMed  Google Scholar 

  25. Shuman SL, Bresnahan JC, Beattie MS. Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J Neurosci Res. 1997;50:798–808.

    Article  CAS  PubMed  Google Scholar 

  26. Matsumoto M, Fujimura Y, Suzuki N, Nishi Y, Nakamura M, Yabe Y, Shiga H. MRI of cervical intervertebral discs in asymptomatic subjects. J Bone Joint Surg Br. 1998;80:19–24.

    Article  CAS  PubMed  Google Scholar 

  27. Lee TH, Kim SJ, Lim SM. Prevalence of disc degeneration in asymptomatic korean subjects. Part 2: cervical spine. J Korean Neurosurg Soc. 2013;53:89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bednarik J, Kadanka Z, Dusek L, Kerkovsky M, Vohanka S, Novotny O, Urbanek I, Kratochvilova D. Presymptomatic spondylotic cervical myelopathy: an updated predictive model. Eur Spine J. 2008;17:421–31.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Iwabuchi M, Kikuchi S, Sato K. Pathoanatomic investigation of cervical spondylotic myelopathy. Fukushima J Med Sci. 2004;50:47–54.

    Article  PubMed  Google Scholar 

  30. Vedantam A, Rajshekhar V. Does the type of T2-weighted hyperintensity influence surgical outcome in patients with cervical spondylotic myelopathy? A review. Eur Spine J. 2013;22:96–106.

    Article  PubMed  Google Scholar 

  31. Boden SD, McCowin PR, Davis DO, Dina TS, Mark AS, Wiesel S. Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am. 1990;72:1178–84.

    CAS  PubMed  Google Scholar 

  32. Wada E, Ohmura M, Yonenobu K. Intramedullary changes of the spinal cord in cervical spondylotic myelopathy. Spine. 1995;20:2226–32.

    Article  CAS  PubMed  Google Scholar 

  33. Suri A, Chabbra RP, Mehta VS, Gaikwad S, Pandey RM. Effect of intramedullary signal changes on the surgical outcome of patients with cervical spondylotic myelopathy. Spine J. 2003;3:33–45.

    Article  PubMed  Google Scholar 

  34. Morio Y, Teshima R, Nagashima H, Nawata K, Yamasaki D, Nanjo Y. Correlation between operative outcomes of cervical compression myelopathy and mri of the spinal cord. Spine. 2001;26:1238–45.

    Article  CAS  PubMed  Google Scholar 

  35. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci. 2003;4:469–80.

    Article  CAS  PubMed  Google Scholar 

  36. Mori S, van Zijl PC. Fiber tracking: principles and strategies–a technical review. NMR Biomed. 2002;15:468–80.

    Article  PubMed  Google Scholar 

  37. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51:527–39.

    Article  CAS  PubMed  Google Scholar 

  38. Sąsiadek MJ, Szewczyk P, Bladowska J. Application of diffusion tensor imaging (DTI) in pathological changes of the spinal cord. Med Sci Monit. 2012;18:73–9.

    Article  Google Scholar 

  39. Lee JW, Kim JH, Kang HS, Lee JS, Choi JY, Yeom JS, Kim HJ, Chung HW. Optimization of acquisition parameters of diffusion-tensor magnetic resonance imaging in the spinal cord. Invest Radiol. 2006;41:553–9.

    Article  CAS  PubMed  Google Scholar 

  40. Clark CA, Werring DJ. Diffusion tensor imaging in spinal cord: methods and applications–a review. NMR Biomed. 2012;15:578–86.

    Article  Google Scholar 

  41. Maier SE. Examination of spinal cord tissue architecture with magnetic resonance diffusion tensor imaging. Neurotherapeutics. 2007;4:453–9.

    Article  PubMed  Google Scholar 

  42. Vargas MI, Delavelle J, Jlassi H, Rilliet B, Viallon M, Becker CD, Lövblad KO. Clinical applications of diffusion tensor tractography of the spinal cord. Neuroradiology. 2008;50:25–9.

    Article  PubMed  Google Scholar 

  43. Bammer R, Augustin M, Prokesch RW, Stollberger R, Fazekas F. Diffusion-weighted imaging of the spinal cord: interleaved echo-planar imaging is superior to fast spin-echo. J Magn Reson Imaging. 2002;15:364–73.

    Article  PubMed  Google Scholar 

  44. Zhang J, Huan Y, Qian Y, Sun L, Ge Y. Multishot diffusion-weighted imaging features in spinal cord infarction. J Spinal Disord Tech. 2005;18:277–82.

    PubMed  Google Scholar 

  45. Bammer R, Stollberger R, Augustin M, Simbrunner J, Offenbacher H, Kooijman H, Ropele S, Kapeller P, Wach P, Ebner F, Fazekas F. Diffusion-weighted imaging with navigated interleaved echo-planar imaging and a conventional gradient system. Radiology. 1999;211:799–806.

    Article  CAS  PubMed  Google Scholar 

  46. Tsuchiya K, Fujikawa A, Suzuki Y. Diffusion tractography of the cervical spinal cord by using parallel imaging. AJNR Am J Neuroradiol. 2005;26:398–400.

    PubMed  Google Scholar 

  47. Cercignani M, Horsfield MA, Agosta F, Filippi M. Sensitivity-encoded diffusion tensor MR imaging of the cervical cord. AJNR Am J Neuroradiol. 2003;24:1254–6.

    PubMed  Google Scholar 

  48. Holdsworth SJ, Skare S, Newbould RD, Guzmann R, Blevins NH, Bammer R. Readout-segmented EPI for rapid high resolution diffusion imaging at 3 T. Eur J Radiol. 2008;65:36–46.

    Article  PubMed  Google Scholar 

  49. Kim TH, Zollinger L, Shi XF, Kim SE, Rose J, Patel AA, Jeong EK. Quantification of diffusivities of the human cervical spinal cord using a 2D single-shot interleaved multisection inner volume diffusion-weighted echo-planar imaging technique. AJNR Am J Neuroradiol. 2010;31:682–7.

    Article  CAS  PubMed  Google Scholar 

  50. Wheeler-Kingshott CA, Parker GJ, Symms MR, Hickman SJ, Tofts PS, Miller DH, Barker GJ. ADC mapping of the human optic nerve: increased resolution, coverage, and reliability with CSF suppressed ZOOM-EPI. Magn Reson Med. 2002;47:24–31.

    Article  PubMed  Google Scholar 

  51. Jeong EK, Kim SE, Guo J, Kholmovski EG, Parker DL. High-resolution DTI with 2D interleaved multislice reduced FOV single-shot diffusion-weighted EPI (2D ss-rFOVDWEPI). Magn Reson Med. 2005;54:1575–79.

    Article  PubMed  Google Scholar 

  52. Saritas EU, Cunningham CH, Lee JH, Han ET, Nishimura DG. DWI of the spinal cord with reduced FOV single-shot EPI. Magn Reson Med. 2008;60:468–73.

    Article  PubMed  Google Scholar 

  53. Dowell NG, Jenkins TM, Ciccarelli O, Miller DH, Wheeler-Kingshott CA. Contiguous-slice zonally oblique multislice (CO-ZOOM) diffusion tensor imaging: examples of in vivo spinal cord and optic nerve applications. J Magn Reson Imaging. 2009;29:454–60.

    Article  PubMed  Google Scholar 

  54. Wilm BJ, Svensson J, Henning A, Pruessmann KP, Boesiger P, Kollias SS. Reduced field-of-view MRI using outer volume suppression for spinal cord diffusion imaging. Magn Reson Med. 2007;57:625–30.

    Article  CAS  PubMed  Google Scholar 

  55. Nana R, Zhao T, Hu X. Single-shot multiecho parallel echo-planar imaging (EPI) for diffusion tensor imaging (DTI) with improved signal-to-noise ratio (SNR) and reduced distortion. Magn Reson Med. 2008; 60:1512–7

  56. Cohen-Adad J, Wheeler-Kingshott CAM. Quantitative MRI of the spinal cord. 1st ed. San Diego: Academic Press; 2014.

    Google Scholar 

  57. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–62.

    Article  CAS  PubMed  Google Scholar 

  58. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202–10.

    Article  PubMed  Google Scholar 

  59. Tsuchiya K, Katase S, Fujikawa A, Hachiya J, Kanazawa H, Yodo K. Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: findings in normal subjects and in myelomalacia. Neuroradiology. 2003;45:90–4.

    CAS  PubMed  Google Scholar 

  60. Zaharchuk G, Saritas EU, Andre JB, Chin CT, Rosenberg J, Brosnan TJ, Shankaranarayan A, Nishimura DG, Fischbein NJ. Reduced field-of-view diffusion imaging of the human spinal cord: comparison with conventional single-shot echo-planar imaging. AJNR Am J Neuroradiol. 2011;32:813–20.

    Article  CAS  PubMed  Google Scholar 

  61. Andre JB, Bammer R. Advanced diffusion-weighted magnetic resonance imaging techniques of the human spinal cord. Top Magn Reson Imaging. 2010;21:367–78.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Saritas EU, Lee D, Çukur T, Shankaranarayanan A, Nishimura DG. Hadamard slice encoding for reduced-FOV diffusion-weighted imaging. Magn Reson Med. 2014;72:1277–90.

    Article  PubMed  Google Scholar 

  63. Gudbjartsson H, Maier SE, Mulkern RV, Mórocz IA, Patz S, Jolesz FA. Line scan diffusion imaging. Magn Reson Med. 1996;36:509–19.

    Article  CAS  PubMed  Google Scholar 

  64. Maier SE, Gudbjartsson H, Patz S, Hsu L, Lovblad KO, Edelman RR, Warach S, Jolesz FA. Line scan diffusion imaging: characterization in healthy subjects and stroke patients. AJR Am J Roentgenol. 1998;171:85–93.

    Article  CAS  Google Scholar 

  65. Bammer R, Herneth AM, Maier SE, Butts K, Prokesch RW, Do HM, Atlas SW, Moseley ME. Line scan diffusion imaging of the spine. AJNR Am J Neuroradiol. 2003;24:5–12.

    PubMed  Google Scholar 

  66. Kubicki M, Maier SE, Westin CF, Mamata H, Ersner-Hershfield H, Estepar R, Kikinis R, Jolesz FA, McCarley RW, Shenton ME. Comparison of single-shot echo-planar and line scan protocols for diffusion tensor imaging. Acad Radiol. 2004;11:224–32.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Clark CA, Barker GJ, Tofts PS. Magnetic resonance diffusion imaging of the human cervical spinal cord in vivo. Magn Reson Med. 1999;41:1269–73.

    Article  CAS  PubMed  Google Scholar 

  68. Pipe JG, Farthing VG, Forbes KP. Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med. 2002;47:42–52.

    Article  PubMed  Google Scholar 

  69. Fellner C, Menzel C, Fellner FA, Ginthoer C, Zorger N, Schreyer A, Jung EM, Feuerbach S, Finkenzeller T. BLADE in sagittal T2-weighted MR imaging of the cervical spine. AJNR Am J Neuroradiol. 2010;31:674–81.

    Article  CAS  PubMed  Google Scholar 

  70. Larson PE, Lustig MS, Nishimura DG. Anisotropic field-of-view shapes for improved PROPELLER imaging. Magn Reson Imaging. 2009;27:470–79.

    Article  PubMed  Google Scholar 

  71. Finsterbusch J, Frahm J. Diffusion-weighted single-shot line scan imaging of the human brain. Magn Reson Med. 1999;42:772–8.

    Article  CAS  PubMed  Google Scholar 

  72. Finsterbusch J, Frahm J. Diffusion tensor mapping of the human brain using single-shot line scan imaging. J Magn Reson Imaging. 2000;12:388–94.

    Article  CAS  PubMed  Google Scholar 

  73. Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986;3:823–33.

    Article  CAS  PubMed  Google Scholar 

  74. Xu D, Henry RG, Mukherjee P, Carvajal L, Miller SP, Barkovich AJ, Vigneron DB. Single-shot fast spin-echo diffusion tensor imaging of the brain and spine with head and phased array coils at 1.5 T and 3.0 T. Magn Reson Imaging. 2004;22:751–9.

    Article  PubMed  Google Scholar 

  75. Sarlls JE, Newbould RD, Altbach MI, Gmitro AF, Seeger J, Trouard TP. Isotropic diffusion weighting in radial fast spin-echo magnetic resonance imaging. Magn Reson Med. 2005;53:1347–54.

    Article  PubMed  Google Scholar 

  76. Skare S, Newbould RD, Clayton DB, Bammer R. Propeller EPI in the other direction. Magn Reson Med. 2006;55:1298–130.

    Article  PubMed  Google Scholar 

  77. Mohammadi S, Freund P, Feiweier T, Curt A, Weiskopf N. The impact of post-processing on spinal cord diffusion tensor imaging. Neuroimage. 2013;70:377–85.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rossi C, Boss A, Lindig TM, Martirosian P, Steidle G, Maetzler W, Claussen CD, Klose U, Schick F. Diffusion tensor imaging of the spinal cord at 1.5 and 3.0 Tesla. Rofo. 2007;179:219–24.

    Article  CAS  PubMed  Google Scholar 

  79. Polders DL, Leemans A, Hendrikse J, Donahue MJ, Luijten PR, Hoogduin JM. Signal to noise ratio and uncertainty in diffusion tensor imaging at 1. 5, 3.0, and 7.0 Tesla. J Magn Reson Imaging. 2011;33:1456–63.

    Article  PubMed  Google Scholar 

  80. Schwartz ED, Chin CL, Shumsky JS, Jawad AF, Brown BK, Wehrli S, Tessler A, Murray M, Hackney DB. Apparent diffusion coefficients in spinal cord transplants and surrounding white matter correlate with degree of axonal dieback after injury in rats. AJNR Am J Neuroradiol. 2005;26:7–18.

    PubMed  Google Scholar 

  81. Cohen-Adad J, Lundell H, Rossignol S. Distortion correction in spinal cord DTI. What’s the best approach? Proceedings of the 17th Annual Meeting of ISMRM. Honolulu, USA; 2009:3178.

  82. Basser PJ, Pajevic S, Pierpaoli C, Duda JT, Aldroubi A. In vivo tractography using DT-MRI data. Magn Reson Med. 2000;44:625–32.

    Article  CAS  PubMed  Google Scholar 

  83. Weinstein DM, Kindlmann GL, Lundberg EC. Tensorlines: advection-diffusion based propagation through diffusiontensor fields. In: IEEE Visualization Proceedings. 1999. SanFrancisco.

  84. Lazar M, Weinstein D, Hasan K, Alexander AL. Axon tractography with tensor lines. Proc Intl Soc Mag Reson Med. 2000;8:482.

    Google Scholar 

  85. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. 2003;50:1077–88.

    Article  CAS  PubMed  Google Scholar 

  86. Parizel PM, Van Rompaey V, Van Loock R, Van Hecke W, Van Goethem JW, Leemans A, Sijbers J. Influence of user-defined parameters on diffusion tensor tractography of the corticospinal tract. Neuroradiol J. 2007;20:139–47.

    Article  CAS  PubMed  Google Scholar 

  87. Valsasina P, Agosta F, Benedetti B, Caputo D, Perini M, Salvi F, Prelle A, Filippi M. Diffusion anisotropy of the cervical cord is strictly associated with disability in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2007;78:480–4.

    Article  CAS  PubMed  Google Scholar 

  88. Toosy AT, Werring DJ, Orrell RW, Howard RS, King MD, Barker GJ, Miller DH, Thompson AJ. Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2003;74:1250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Renoux J, Facon D, Fillard P, Huynh I, Lasjaunias P, Ducreux D. MR diffusion tensor imaging and fiber tracking in inflammatory diseases of the spinal cord. AJNR Am J Neuroradiol. 2006;27:1947–51.

    CAS  PubMed  Google Scholar 

  90. Ducreux D, Lepeintre JF, Fillard P, Loureiro C, Tadié M, Lasjaunias P. MR diffusion tensor imaging and fiber tracking in 5 spinal cord astrocytomas. AJNR Am J Neuroradiol. 2006;27:214–6.

    CAS  PubMed  Google Scholar 

  91. Agosta F, Rovaris M, Benedetti B, Valsasina P, Filippi M, Comi G. Diffusion tensor MRI of the cervical cord in a patient with syringomyelia and multiple sclerosis. J Neurol Neurosurg Psychiatry. 2004;75:1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Facon D, Ozanne A, Fillard P, Lepeintre JF, Tournoux-Facon C, Ducreux D. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol. 2005;26:1587–94.

    PubMed  Google Scholar 

  93. Song T, Chen WJ, Yang B, Zhao HP, Huang JW, Cai MJ, Dong TF, Li TS. Diffusion tensor imaging in the cervical spinal cord. Eur Spine J. 2011;20:422–8.

    Article  PubMed  Google Scholar 

  94. Chen CJ, Lyu RK, Lee ST, Wong YC, Wang LJ. Intramedullary high signal intensity on T2-weighted MR images in cervical spondylotic myelopathy: prediction of prognosis with type of intensity. Radiology. 2001;221:789–94.

    Article  CAS  PubMed  Google Scholar 

  95. Fernández de Rota JJ, Meschian S, Fernández de Rota A, Urbano V, Baron M. Cervical spondylotic myelopathy due to chronic compression: the role of signal intensity changes in magnetic resonance images. J Neurosurg Spine. 2007;6:17–22.

    Article  PubMed  Google Scholar 

  96. Aota Y, Niwa T, Uesugi M, Yamashita T, Inoue T, Saito T. The correlation of diffusion-weighted magnetic resonance imaging in cervical compression myelopathy with neurologic and radiologic severity. Spine. 2008;33:814–20.

    Article  PubMed  Google Scholar 

  97. Kerkovský M, Bednarík J, Dušek L, Sprláková-Puková A, Urbánek I, Mechl M, Válek V, Kadanka Z. Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression: correlations between clinical and electrophysiological findings. Spine. 2012;37:48–56.

    Article  PubMed  Google Scholar 

  98. Budzik JF, Balbi V, Thuc V L, Duhamel A, Assaker R, Cotten A. Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy. Eur Radiol. 2011;21:426–33.

    Article  PubMed  Google Scholar 

  99. Bosma RL, Stroman PW. Characterization of DTI indices in the cervical, thoracic, and lumbar spinal cord in healthy humans. Radiol Res Pract. 2012;2012:143705.

    PubMed  PubMed Central  Google Scholar 

  100. Kara B, Celik A, Karadereler S, Ulusoy L, Ganiyusufoglu K, Onat L, Mutlu A, Ornek I, Sirvanci M, Hamzaoglu A. The role of DTI in early detection of cervical spondylotic myelopathy: a preliminary study with 3-T MRI. Neuroradiology. 2011;53:609–16.

    Article  PubMed  Google Scholar 

  101. Lee JW, Kim JH, Park JB, Park KW, Yeom JS, Lee GY, Kang HS. Diffusion tensor imaging and fiber tractography in cervical compressive myelopathy: preliminary results. Skeletal Radiol. 2011;40:1543–51.

    Article  PubMed  Google Scholar 

  102. Mamata H, Jolesz FA, Maier SE. Apparent diffusion coefficient and fractional anisotropy in spinal cord: age and cervical spondylosis-related changes. J Magn Reson Imaging. 2005;22:38–43.

    Article  PubMed  Google Scholar 

  103. Nevo U, Hauben E, Yoles E, Agranov E, Akselrod S, Schwartz M, Neeman M. Diffusion anisotropy MRI for quantitative assessment of recovery in injured rat spinal cord. Magn Reson Med. 2001;45:1–9.

    Article  CAS  PubMed  Google Scholar 

  104. Cheung MM, Li DT, Hui ES, Fan S, Ding AY, Hu Y, Wu EX. In vivo diffusion tensor imaging of chronic spinal cord compression in rat model. Conf Proc IEEE Eng Med Biol Soc. 2009:2715–8.

  105. Jones JG, Cen SY, Lebel RM, Hsieh PC, Law M. Diffusion tensor imaging correlates with the clinical assessment of disease severity in cervical spondylotic myelopathy and predicts outcome following surgery. AJNR Am J Neuroradiol. 2013;34:471–8.

    Article  CAS  PubMed  Google Scholar 

  106. Chiewvit P, Tritrakarn SO, Phawjinda A, Chotivichit A. Predictive value of magnetic resonance imaging in cervical spondylotic myelopathy in prognostic surgical outcome. J Med Assoc Thai. 2011;94:346–54.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Banaszek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banaszek, A., Bladowska, J., Podgórski, P. et al. Role of Diffusion Tensor MR Imaging in Degenerative Cervical Spine Disease: a Review of the Literature. Clin Neuroradiol 26, 265–276 (2016). https://doi.org/10.1007/s00062-015-0467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-015-0467-y

Keywords

Navigation