Skip to main content
Log in

Novel insight into the dangerous connection between diabetes and heart failure

Neue Erkenntnisse zur gefährlichen Verbindung von Diabetes und Herzversagen

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Heart failure (HF) affects approximately 1–2 % of the adult population. Diabetes mellitus (DM) is one of the most frequent comorbidities in HF, portending a worse prognosis. DM is associated with an increased risk of artery disease, and consequently of post-ischemic HF, but it may also alter directly the myocardial structure and function. Insights into the pathophysiological mechanisms of diabetic cardiomyopathy have been provided by both experimental and clinical investigations. In recent years, it has emerged that the fibrotic process is a result of the convergence of multiple neurohormonal alterations in diabetic cardiomyopathy at the basis of disease progression and phenotype determination: HF with reduced or preserved ejection fraction. Therapies for HF and DM should demonstrate an improved prognosis and have a neutral effect on glucose homeostasis and the risk of HF development.

Zusammenfassung

Herzversagen (heart failure, HF) betrifft ungefähr 1–2 % der erwachsenen Bevölkerung. Diabetes mellitus (DM) ist eine der häufigsten Komorbiditäten bei HF und deutet auf eine verschlechterte Prognose hin. DM ist mit einem erhöhten Risiko von Arterienerkrankungen verbunden, und infolgedessen mit einer Entwicklung zu post-ischämischem HF, er kann aber auch direkt die myokardiale Struktur und Funktion verändern. Einblicke in die pathophysiologischen Mechanismen von diabetischer Kardiomyopathie wurden sowohl von experimentellen als auch von klinischen Untersuchungen geliefert. In den letzten Jahren hat sich der fibrotische Prozess als Ergebnis des Zusammenlaufens multipler neurohormonaler Veränderungen bei diabetischer Kardiomyopathie aufgrund des Krankheitsverlaufs und der Phänotypbestimmung herausgestellt: HF mit verringerter oder erhaltener Auswurfleistung. Therapien für HF und DM sollten eine verbesserte Prognose zeigen und eine neutrale Wirkung sowohl auf die Glukosehomöostase und als auch auf das Risiko der HF-Entwicklung haben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mosterd A, Hoes AW (2007) Clinical epidemiology of heart failure. Heart 93:1137–1146

    Article  PubMed  PubMed Central  Google Scholar 

  2. http://www.diabetes.org/diabetes-basics/statistics/#sthash.lbQDh7Gf.dpuf. Zugegriffen: 01.04.2016

  3. The CONSENSUS trial study group (1987) Effect of enalapril on mortality in severe congestive heart failure. N Engl J Med 316:1429–1435

    Article  Google Scholar 

  4. Rydén L, Armstrong PW, Cleland JG, Horowitz JD et al (2000) Efficacy and safety of high-dose lisinopril in chronic heart failure patients at high cardiovascular risk, including those with diabetes mellitus. Results from the ATLAS trial. Eur Heart J 21(23):1967–1978

    Article  CAS  PubMed  Google Scholar 

  5. Shindler DM, Kostis JB, Yusuf S, Quinones MA et al (1996) Diabetes mellitus, a predictor of morbidity and mortality in the Studies of Left Ventricular Dysfunction (SOLVD) Trials and Registry. Am J Cardiol7 7:1017–1020

    Article  CAS  PubMed  Google Scholar 

  6. Cohn JN, Johnson G, Ziesche S, Cobb F et al (1991) A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 325(5):303–310

    Article  Google Scholar 

  7. The NETWORK Investigators (1998) Clinical outcome with enalapril in symptomatic chronic heart failure; a dose comparison. Eur Heart J 19(3):481–489

    Google Scholar 

  8. Nichols GA, Gullion CM, Koro CE, Ephross SA et al (1879) The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care 27:1879–1884

    Article  Google Scholar 

  9. Thrainsdottir IS, Aspelund T, Thorgeirsson G, Gudnason V et al (2005) The association between glucose abnormalities and heart failure in the population-based Reykjavik study. Diabetes Care 28:612–616

    Article  PubMed  Google Scholar 

  10. Nodari S, Manerba A, Vaccari A, Milesi G et al (2012) Six-year prognosis of diabetic patients with coronary artery disease. Eur J Clin Invest 42(4):376–383

    Article  CAS  PubMed  Google Scholar 

  11. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T et al (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602

    Article  CAS  PubMed  Google Scholar 

  12. Dei Cas A, Spigoni V, Ridolfi V, Metra M (2013) Diabetes and chronic heart failure: from diabetic cardiomyopathy to therapeutic approach. Endocr Metab Immune Disord Drug Targets 13(1):38–50

    Article  CAS  PubMed  Google Scholar 

  13. Dei Cas A, Khan SS, Butler J, Mentz RJ et al (2015) Impact of diabetes on epidemiology, treatment, and outcomes of patients with heart failure. JACC Heart Fail 3(2):136–145

    Article  PubMed  Google Scholar 

  14. Kakkar R, Lee RT (2010) Intramyocardial fibroblast myocyte communication. Circ Res 106:47–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-β1 in cardiomyopathy, valvular disease and arrhythmia. Immunology 118:10–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh VP, Baker KM, Kumar R (2008) Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am J Physiol Heart Circulat Physiol 294:H1675–H1684

    Article  CAS  Google Scholar 

  17. Striker GE, Eastman RD, Striker LJ (1996) Diabetic nephropathy: molecular analysis of extracellular matrix and clinical studies update. Nephrol Dial Transplant 5:58–61

    Article  Google Scholar 

  18. Aneja A, Tang WH, Bansilal S, Garcia MJ et al (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121:748–757

    Article  PubMed  Google Scholar 

  19. Zhao J, Randive R, Stewart JA (2014) Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World J Diabetes 5:860–867

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang M, Kho AL, Anilkumar N, Chibber R et al (2006) Glycated proteins stimulate reactive oxygen species production in cardiac myocytes: involvement of Nox2 (gp91phox)-containing NADPH oxidase. Circulation 113(9):1235–1243

    Article  CAS  PubMed  Google Scholar 

  21. Schneider MD, McLellan WR, Black FM, Parker TG (1992) Growth factors, growth factor response elements, and the cardiac phenotype. Basic Res Cardiol 87(suppl 2):33–48

    CAS  PubMed  Google Scholar 

  22. Van Heerebeek L, Hamdani N, Handoko L, Falcao-Pires I et al (2008) Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation endproducts and myocyte resting tension. Circulation 117:43–51

    Article  PubMed  Google Scholar 

  23. Seferović PM, Paulus WJ (2015) Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J 36(27):1718–1727

    Article  PubMed  Google Scholar 

  24. Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271

    Article  PubMed  Google Scholar 

  25. van Heerebeek L, Borbely A, Niessen HWM, Bronzwaer JGF et al (2006) Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113:1966–1973

    Article  PubMed  Google Scholar 

  26. Mcmurray JJ, Adamopoulos S, Anker SD, Auricchio A et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the european society of cardiology. developed in collaboration with the heart failure association of the ESC. Eur J Heart Fail 14(8):803–869

    Article  CAS  PubMed  Google Scholar 

  27. Dei Cas L, Metra M, Nodari S et al (2003) Prevention and management of chronic heart failure in patients at risk. Am J Cardiol 91(9A):10F–17F

    Article  PubMed  Google Scholar 

  28. Domanski M, Krause-Steinrauf H, Deedwania P, Follmann D et al (2003) The effect of diabetes on outcomes of patients with advanced heart failure in the BEST trial. J Am Coll Cardiol 42:914–922

    Article  PubMed  Google Scholar 

  29. Deedwania PC, Giles TD, Klibaner M, Ghali JK et al (2005) Efficacy, safety and tolerability of metoprolol CR/XL in patients with diabetes and chronic heart failure: experiences from MERIT-HF. Am Heart J 149:159–167

    Article  CAS  PubMed  Google Scholar 

  30. Erdmann E, Lechat P, Verkenne P, Wiemann H (2001) Results from post-hoc analyses of the CIBIS II trial:effect of bisoprolol in high-risk patient groups with chronic heart failure. Eur J Heart Fail 3:469–479

    Article  CAS  PubMed  Google Scholar 

  31. Andrey JL, Puerto JL, Aranda RM, Pedrosa MJ et al (2015) Beta-blocker therapy and prognosis of heart failure patients with new-onset diabetes mellitus. Int J Clin Pr 69:550–559

    Article  Google Scholar 

  32. Prospective Diabetes Study Group (1998) Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BMJ 317:713–720

    Article  Google Scholar 

  33. Nodari S, Metra M, Dei Cas A, Dei Cas L (2003) Efficacy and tolerability of the long-term administration of carvedilol in patients with chronic heart failure with and without concomitant diabetes. Eur J Heart Fail 5:803–809

    Article  CAS  PubMed  Google Scholar 

  34. De Boer RA, Doehner W, Van Der Horst IC, Anker SD et al (2010) Influence of Diabetes Mellitus and Hyperglycemia on Prognosis in Patients > 70 Years Old With Heart Failure and Effects of Nebivolol (Data from the Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors With Heart Failure). Am J Cardiol 106:78–89

    Article  PubMed  Google Scholar 

  35. Abdel-Raheem MH, Salim SU, Mosad E, Al-Rifaay A et al (2015) Antiapoptotic and antioxidant effects of carvedilol and vitamin E protect against diabetic nephropathy and cardiomyopathy in diabetic Wistar albino rats. Horm Metab Res 47:97–106

    CAS  PubMed  Google Scholar 

  36. Kamp O, Metra M, Bugatti S, Bettari L, Dei Cas A et al (2010) Nebivolol: haemodynamic effects and clinical significance of combined beta-blockade and nitric oxide release. Drugs 70(1):41–56

    Article  CAS  PubMed  Google Scholar 

  37. Dornhorst A, Powell SH, Pensky J (1985) Aggravation by propranolol of hyperglycaemic effect of hydrochlorothiazide in type II diabetics without alteration of insulin secretion. Lancet 1:123–126

    Article  CAS  PubMed  Google Scholar 

  38. Holzgreve H, Nakov R, Beck K, Janka HU (2003) Antihypertensive therapy with verapamil SR plus trandolapril versus atenolol plus chlorthalidone on glycemic control. Am J Hypertens 16:381–386

    Article  CAS  PubMed  Google Scholar 

  39. Torp-pedersen C, Metra M, Charlesworth A, Spark P et al (2007) Effects of metoprolol and carvedilol on pre-existing and new onset diabetes in patients with chronic heart failure: data from the Carvedilol Or Metoprolol European Trial (COMET). Heart 93:968–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wai B, Kearney LG, Hare DL, Ord M et al (2012) Beta blocker use in subjects with type 2 diabetes mellitus and systolic heart failure does not worsen glycaemic control. Cardiovasc Diabetol 11:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ayers K, Byrne LM, DeMatteo A, Brown NJ (2012) Differential effects of nebivolol and metoprolol on insulin sensitivity and plasminogen activator inhibitor in the metabolic syndrome. Hypertension 59:893–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tuck ML, Bounoua F, Eslami P, Nyby MD et al (2004) Insulin stimulates endogenous angiotensin II production via a mitogen-activated protein kinase pathway in vascular smooth muscle cells. J Hypertens 22:1779–1785

    Article  CAS  PubMed  Google Scholar 

  43. Segura AM, Frazier OH, Buja LM (2014) Fibrosis and heart failure. Heart Fail Rev 19(2):173–185

    Article  CAS  PubMed  Google Scholar 

  44. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy (2000) Heart Outcomes Prevention Evaluation Study Investigators. Lancet 355:253–259

  45. Cheng J, Zhang W, Zhang X, Han F et al (2014) Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis. JAMA 174:773–785

    CAS  Google Scholar 

  46. Barnett AH, Bain SC, Bouter P, Karlberg B et al (2004) Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med 351:1952–1961

    Article  CAS  PubMed  Google Scholar 

  47. Haller H, Ito S, Izzo JL Jr, Januszewicz A, ROADMAP Trial Investigators et al (2011) Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med 364(10):907–917

    Article  CAS  PubMed  Google Scholar 

  48. Imai E, Chan JCN, Ito S, Yamasaki T et al (2011) Effects of olmesartan on renal and cardiovascular outcomes in type 2 diabetes with overt nephropathy: a multicentre, randomised, placebo-controlled study. Diabetologia 54:2978–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abuissa H, Jones PG, Marso SP, O’Keefe et al (2005) Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J Am Coll Cardiol 46:821–826

    Article  CAS  PubMed  Google Scholar 

  50. Doehner W, Todorovic J, Kennecke C, Rauchhaus M et al (2012) Improved insulin sensitivity by the angiotensin receptor antagonist irbesartan in patients with systolic heart failure: a randomized double-blinded placebo-controlled study. Int J Cardiol 2012(161):137–142

    Article  Google Scholar 

  51. Yusuf S, Ostergren JB, Gerstein HC, Pfeffer MA et al (2005) Effects of candesartan on the development of a new diagnosis of diabetes mellitus. Circulation 112:48–53

    Article  CAS  PubMed  Google Scholar 

  52. Michel MC, Foster C, Brunner HR, Liu L (2013) A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol Rev 65(2):809–848

    Article  PubMed  Google Scholar 

  53. Pitt P, Zannad F, Remme WJ, Cody R (1999) The effect of Spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 341(10):709–717

    Article  CAS  PubMed  Google Scholar 

  54. Zannad F, McMurray JJ, Krum H, Veldhuisen DJ et al (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364:11–21

    Article  CAS  PubMed  Google Scholar 

  55. Silva MA, Cau SB, Lopes RA, Manzato CP et al (2015) Mineralocorticoid receptor blockade prevents vascular remodelling in a rodent model of type 2 diabetes mellitus. Clin Sci (lond) 129:533–545

    Article  CAS  Google Scholar 

  56. Swaminathan K, Davies J, George J, Rajendra NS et al (2008) Spironolactone for poorly controlled hypertension in type 2 diabetes: Conflicting effects on blood pressure, endothelial function, glycaemic control and hormonal profiles. Diabetologia 51:762–768

    Article  CAS  PubMed  Google Scholar 

  57. Polyzos SA, Kountouras J, Zafeiriadou E, Patsiaoura K et al (2011) Effect of spironolactone and vitamin E on serum metabolic parameters and insulin resistance in patients with nonalcoholic fatty liver disease. J Renin Angiotensin Aldosterone Syst 12:498–503

    Article  CAS  PubMed  Google Scholar 

  58. Yamaji M, Tsutamoto T, Kawahara C, Nishiyama K et al (2010) Effect of eplerenone versus spironolactone on cortisol and hemoglobin A1c levels in patients with chronic heart failure. Am Heart J 160:915–921

    Article  CAS  PubMed  Google Scholar 

  59. Preiss D, van Veldhuisen DJ, Sattar N, Krum H et al (2012) Eplerenone and new-onset diabetes in patients with mild heart failure: results from the Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF). Eur J Heart Fail 14:909–915

    Article  CAS  PubMed  Google Scholar 

  60. Vaduganathan M, Dei Cas A, Mentz RJ, Greene SJ et al (2014) Mineralocorticoid receptor antagonist use in hospitalized patients with heart failure, reduced ejection fraction, and diabetes mellitus (from the EVEREST trial). Am J Cardiol 114:743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bakris GL, Agarwal R, Chan JC, Cooper ME et al (2015) Effect of Finerenone on Albuminuria in patients with diabetic Nephropathy: a randomized clinical trial. JAMA 314(9):884–894

    Article  CAS  PubMed  Google Scholar 

  62. Pitt B, Anker SD, Böhm M, Gheorghiade M et al (2015) Rationale and design of miner alocorticoid receptor antagonist Tolerability study-heart failure (aRTS-HF): a randomized study of finerenone vs. eplerenone in patients who have worsening chronic heart failure with diabetes and/or chronic kidney disease. Eur J Hear Fail 17:224–232

    Article  CAS  Google Scholar 

  63. Maggioni AP, Greene SJ, Fonarow GC, Bohm M et al (2013) Effect of aliskiren on post-discharge outcomes among diabetic and non-diabetic patients hospitalized for heart failure: insights from the ASTRONAUT trial. Eur Heart J 34:3117–3127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Krum H, Mcmurray JJV, Abraham WT, Dickstein K et al (2015) The Aliskiren trial to minimize outcomes in patients with heart failure trial (ATMOSPHERE): revised statistical analysis plan and baseline characteristics. Eur J Heart Fail 17(10):1075–1083

    Article  CAS  PubMed  Google Scholar 

  65. McMurray JJ, Packer M, Desai AS, Gong J, PARADIGM-HF Investigators and Committees et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004

    Article  PubMed  Google Scholar 

  66. Cao Z, Burrell LM, Tikkanen I, Bonnet F et al (2001) Vasopeptidase inhibition attenuates the progression of renal injury in subtotal nephrectomized rats. Kidney Int 60:715–721

    Article  CAS  PubMed  Google Scholar 

  67. Taal MW, Nenov VD, Wong W, Satyal SR et al (2001) Vasopeptidase inhibition affords greater renoprotection than angiotensin-converting enzyme inhibition alone. J Am Soc Nephrol 12:2051–2059

    CAS  PubMed  Google Scholar 

  68. Davis BJ, Johnston CI, Burrell LM, Burns WC et al (2003) Renoprotective effects of vasopeptidase inhibition in an experimental model of diabetic nephropathy. Diabetologia 46:961–971

    Article  CAS  PubMed  Google Scholar 

  69. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M et al (2015) Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38(1):140–149

    Article  PubMed  Google Scholar 

  70. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E et al (2005) PROactive investigators. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289

    Article  CAS  PubMed  Google Scholar 

  71. Scirica BM, Bhatt DL, Braunwald E, Steg PG et al (2013) SAVOR-TIMI 53 Steering Committee and Investigators. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369(14):1317–1326

    Article  CAS  PubMed  Google Scholar 

  72. Zannad F, Cannon CP, Cushman WC, Bakris GL, EXAMINE Investigators et al (2015) Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet 385(9982):2067–2076

    Article  CAS  PubMed  Google Scholar 

  73. Green JB, Bethel MA, Armstrong PW, Buse JB, TECOS Study Group et al (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 373(3):232–242

    Article  CAS  PubMed  Google Scholar 

  74. Pfeffer MA, Claggett B, Diaz R, Dickstein K, ELIXA Investigators et al (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373(23):2247–2257

    Article  PubMed  Google Scholar 

  75. Zinman B, Wanner C, Lachin JM, Fitchett D, EMPA-REG OUTCOME Investigators et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dei Cas.

Ethics declarations

Conflict of interest

C. Lombardi, V. Spigoni, E. Gorga, and A. Dei Cas state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombardi, C., Spigoni, V., Gorga, E. et al. Novel insight into the dangerous connection between diabetes and heart failure. Herz 41, 201–207 (2016). https://doi.org/10.1007/s00059-016-4415-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-016-4415-7

Keywords

Schlüsselwörter

Navigation