Skip to main content
Log in

Digital 3D image of bimaxillary casts connected by a vestibular scan

Digitale dreidimensionale Darstellung von Kiefermodellpaaren mittels Vestibulärscan

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Aim

The task of three-dimensionally aligning digital images of scans taken from maxillary and mandibular casts can be accomplished by scanning an interocclusal record, but vestibular scanning is also an option. The present study addressed whether this latter technique is precise enough to be used in orthodontic practice.

Materials and methods

A total of 10 pairs of casts representing different types of tooth and jaw malposition were scanned with a photo-optical scanner (Activity 102; Smart Optics, Bochum, Germany). After obtaining detailed single scans of each upper and lower jaw, each pair of casts was rigidly aligned with instant glue. Subsequently, three vestibular scans were taken and were then merged with the single-jaw scans to form virtual bimaxillary models. These virtual models were superimposed with each other and analyzed, using the structures of the mandible as constant and documenting the highest occlusal and vestibular deviations measured on each maxillary tooth or gingival region. Descriptive analysis and a mixed linear model were performed with SPSS and SAS.

Results

The greatest deviations between the virtual bimaxillary models averaged 37±28 μm. No significant differences were seen between tooth sites along the dental arch, dentate versus edentulous sites, or occlusal versus vestibular surfaces. The mean of the greatest deviations between repeated scans were found to be 28±14 μm (vestibular scans) and 15±8 μm (single-jaw scans).

Conclusion

The presented approach of generating bimaxillary study models in a virtual environment with the help of vestibular scans meets the precision requirements for use in orthodontics and can be employed in further studies.

Zusammenfassung

Ziel

Die räumliche Zuordnung von Ober(OK)- zu Unterkiefer(UK)-Modell im digitalen Bild kann neben dem Scannen eines Fixationsbisses auch durch das Vestibulärscanverfahren erfolgen. Geprüft werden sollte, ob dieses Verfahren für den kieferorthopädischen Einsatz geeignet ist.

Material und Methode

Nach Erstellung detaillierter OK- und UK-Einzelkieferscans wurden von 10 in Okklusion zusammengesetzten Modellpaaren unterschiedlicher Zahn- und Kieferfehlstellungen unter starrer Fixierung (Sekundenkleber) je dreimal Vestibulärscans erstellt (Scanner Activity 102; Smart Optics, Bochum) und mit den Einzelkieferscans zu Modellpaaren verschmolzen. Die Paare wurden an den Strukturen des UK miteinander überlagert. Je Oberkieferzahn wurden die maximalen Abweichungsbeträge in okklusaler und in vestibulärer Richtung bestimmt. In SPSS und SAS wurden deskriptive Analyse und das gemischte lineare Modell ausgeführt.

Ergebnisse

Der Mittelwert der maximalen Abweichungsbeträge zwischen den digitalen Modellpaaren betrug 37±28 μm. Es zeigten sich keine signifikanten regionalen Unterschiede innerhalb des Zahnbogens, zwischen bezahnten und unbezahnten oder zwischen okklusalen und vestibulären Flächen. Die durchschnittlich zu erwartenden maximalen Abweichungsbeträge beim Vergleich zweier Vestibulärscans wurden mit 28±14 μm, die bei wiederholter Einzelkieferscanerstellung mit 15±8 μm ermittelt.

Schlussfolgerung

Da die Erstellung der digitalen Modelle mit Hilfe des Vestibulärscans die Genauigkeitsanforderungen in der Kieferorthopädie erfüllt, kann dieses Verfahren für weitere Studien eingesetzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Al-Khatib AR, Rajion ZA, Masudi SM et al (2011) Tooth size and dental arch dimensions: a stereophotogrammetric study in Southeast Asian Malays. Orthod Craniofac Res 14:243–253

    Article  PubMed  Google Scholar 

  2. Asquith J, McIntyre G (2012) Dental arch relationships on three-dimensional digital study models and conventional plaster study models for patients with unilateral cleft lip and palate. Cleft Palate Craniofac J 49:530–534

    Article  PubMed  Google Scholar 

  3. Bell A, Ayoub AF, Siebert P (2003) Assessment of the accuracy of a three-dimensional imaging system for archiving dental study models. J Orthod 30:219–223

    Article  PubMed  Google Scholar 

  4. Berneburg M, Schubert C, Einem C von, et al (2010) The reproducibility of landmarks on three-dimensional images of 4- to 6-year-old children. J Orofac Orthop 71:256–264

    Article  PubMed  Google Scholar 

  5. Boldt F, Weinzierl C, Hertrich K et al (2009) Comparison of the spatial landmark scatter of various 3D digitalization methods. J Orofac Orthop 70:247–263

    Article  PubMed  Google Scholar 

  6. Chadwick RG, Mitchell HL, Cameron I et al (1997) Development of a novel system for assessing tooth and restoration wear. J Dent 25:41–47

    Article  PubMed  Google Scholar 

  7. Dalstra M, Melsen B (2009) From alginate impressions to digital virtual models: accuracy and reproducibility. J Orthod 36:36–41 (discussion 14)

    Article  PubMed  Google Scholar 

  8. Dastane A, Vaidyanathan TK, Vaidyanathan J et al (1996) Development and evaluation of a new 3-D digitization and computer graphic system to study the anatomic tissue and restoration surfaces. J Oral Rehabil 23:25–34

    Article  PubMed  Google Scholar 

  9. DeLong R, Knorr S, Anderson GC et al (2007) Accuracy of contacts calculated from 3D images of occlusal surfaces. J Dent35:528–534

    Google Scholar 

  10. DeLong R, Ko CC, Anderson GC et al (2002) Comparing maximum intercuspal contacts of virtual dental patients and mounted dental casts. J Prosthet Dent 88:622–630

    Article  PubMed  Google Scholar 

  11. Dixon DL (2000) Overview of articulation materials and methods for the prosthodontic patient. J Prosthet Dent 83:235–247

    Article  PubMed  Google Scholar 

  12. Fleming PS, Marinho V, Johal A (2011) Orthodontic measurements on digital study models compared with plaster models: a systematic review. Orthod Craniofac Res14:1–16

    Article  Google Scholar 

  13. Hiew LT, Ong SH, Foong KWC (2009) Optimal occlusion of teeth using planar structure information. Machine Vision Applications 21:735–747

    Article  Google Scholar 

  14. Hoefert CS, Bacher M, Herberts T et al (2010) Implementing a superimposition and measurement model for 3D sagittal analysis of therapy-induced changes in facial soft tissue: a pilot study. J Orofac Orthop 71:221–234

    Article  PubMed  Google Scholar 

  15. Hofmann E, Rodich M, Hirschfelder U (2011) The topography of displaced canines: a 3D-CT study. J Orofac Orthop 72:247–252, 54–60

    Article  PubMed  Google Scholar 

  16. Horton HM, Miller JR, Gaillard PR et al (2010) Technique comparison for efficient orthodontic tooth measurements using digital models. Angle Orthod 80:254–261

    Article  PubMed  Google Scholar 

  17. Imbery TA, Nehring J, Janus C et al (2010) Accuracy and dimensional stability of extended-pour and conventional alginate impression materials. J Am Dent Assoc 141:32–39

    PubMed  Google Scholar 

  18. Kamegawa M, Nakamura M, Tsutsumi S (2008) 3D morphological measurements of dental casts with occlusal relationship using microfocus X-ray CT. Dent Mater J 27:549–554

    Article  PubMed  Google Scholar 

  19. Kau CH, Littlefield J, Rainy N et al (2010) Evaluation of CBCT digital models and traditional models using the Little’s Index. Angle Orthod 80:435–439

    Article  PubMed  Google Scholar 

  20. Keating AP, Knox J, Bibb R et al (2008) A comparison of plaster, digital and reconstructed study model accuracy. J Orthod 35:191–201 (discussion 175)

    Article  PubMed  Google Scholar 

  21. Kochel J, Meyer-Marcotty P, Kochel M et al (2010) 3D soft tissue analysis—part 2: vertical parameters. J Orofac Orthop 71:207–220

    Article  PubMed  Google Scholar 

  22. Kochel J, Meyer-Marcotty P, Strnad F et al (2010) 3D soft tissue analysis—part 1: sagittal parameters. J Orofac Orthop 71:40–52

    Article  PubMed  Google Scholar 

  23. Leenarts CM, Bartzela TN, Bronkhorst EM et al (2012) Photographs of dental casts or digital models: rating dental arch relationships in bilateral cleft lip and palate. Int J Oral Maxillofac Surg 41:180–185

    Article  PubMed  Google Scholar 

  24. Leifert MF, Leifert MM, Efstratiadis SS et al (2009) Comparison of space analysis evaluations with digital models and plaster dental casts. Am J Orthod Dentofacial Orthop 136:16 e1–e4 (discussion)

    Article  PubMed  Google Scholar 

  25. Mandikos MN (1998) Polyvinyl siloxane impression materials: an update on clinical use. Aust Dent J 43:428–434

    Article  PubMed  Google Scholar 

  26. Mayers M, Firestone AR, Rashid R et al (2005) Comparison of peer assessment rating (PAR) index scores of plaster and computer-based digital models. Am J Orthod Dentofacial Orthop 128:431–434

    Article  PubMed  Google Scholar 

  27. Mullen SR, Martin CA, Ngan P et al (2007) Accuracy of space analysis with emodels and plaster models. Am J Orthod Dentofacial Orthop 132:346–352

    Article  PubMed  Google Scholar 

  28. Pauls AH (2010) Therapeutic accuracy of individualized brackets in lingual orthodontics. J Orofac Orthop 71:348–361

    Article  PubMed  Google Scholar 

  29. Quimby ML, Vig KW, Rashid RG et al (2004) The accuracy and reliability of measurements made on computer-based digital models. Angle Orthod 74:298–303

    PubMed  Google Scholar 

  30. Sade Hoefert C, Bacher M, Herberts T et al (2010) 3D soft tissue changes in facial morphology in patients with cleft lip and palate and class III mal occlusion under therapy with rapid maxillary expansion and delaire facemask. J Orofac Orthop 71:136–151

    Article  Google Scholar 

  31. Santoro M, Galkin S, Teredesai M et al (2003) Comparison of measurements made on digital and plaster models. Am J Orthod Dentofacial Orthop 124:101–105

    Article  PubMed  Google Scholar 

  32. Steinhäuser-Andresen S, Detterbeck A, Funk C et al (2011) Pilot study on accuracy and dimensional stability of impression materials using industrial CT technology. J Orofac Orthop 72:111–124

    Article  PubMed  Google Scholar 

  33. Stevens DR, Flores-Mir C, Nebbe B et al (2006) Validity, reliability, and reproducibility of plaster vs digital study models: comparison of peer assessment rating and Bolton analysis and their constituent measurements. Am J Orthod Dentofacial Orthop 129:794–803

    Article  PubMed  Google Scholar 

  34. Straga RW (2009) Comparison of occlusal contacts on mounted dental models to contacts identified on digital 3D models using a new virtual alignment method. Dissertation, University of British Columbia

  35. White AJ, Fallis DW, Vandewalle KS (2010) Analysis of intra-arch and interarch measurements from digital models with 2 impression materials and a modeling process based on cone-beam computed tomography. Am J Orthod Dentofacial Orthop 137:456 e1–e9 (discussion 7)

    Article  PubMed  Google Scholar 

  36. Wriedt S, Jaklin J, Al-Nawas B et al (2012) Impacted upper canines: examination and treatment proposal based on 3D versus 2D diagnosis. J Orofac Orthop 73:28–40

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Interessenkonflikt

Die korrespondierende Autorin gibt für sich und ihre Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wriedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wriedt, S., Schmidtmann, I., Niemann, M. et al. Digital 3D image of bimaxillary casts connected by a vestibular scan. J Orofac Orthop 74, 309–318 (2013). https://doi.org/10.1007/s00056-013-0152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-013-0152-1

Keywords

Schlüsselwörter

Navigation