Skip to main content
Log in

Grüner Tee – Daten und Studien zur chinesischen und westlichen Wirkung

Green Tea—Data and studies on the Chinese and Western effects

  • Zertifizierte Fortbildung
  • Published:
Chinesische Medizin / Chinese Medicine Aims and scope

Zusammenfassung

Grüner Tee (Camellia sinensis) ist eine Art unfermentierter Tee, der die natürliche Substanz frischer Blätter weitgehend beibehält. Nach Wasser ist er das zweitbeliebteste Getränk weltweit. In diesem Artikel werden seine historische und zeitgenössische Bedeutung sowie relevante Studien dazu vorgestellt. Die Inhaltsstoffe des grünen Tees werden dargestellt und die physiologischen und pharmakologischen Wirkungen, relevante Nebenwirkungen oder Wechselwirkungen sowie mögliche Toxikologien werden entsprechend ihrer klinischen Relevanz besprochen. Studien haben gezeigt, dass die Tee-Polyphenole mit den Catechinen als Hauptvertreter die größte klinische Bedeutung haben und vielseitig pharmakologisch aktiv sind. Antioxidative, antikanzeröse, antibakterielle, antivirale, hypoglykämische und kardiovaskuläre sowie neuroprotektive Wirkungen konnten nachgewiesen werden. Toxische Wirkungen wie die Hepatotoxizität sind sehr selten und traten vor allem bei sehr hohen Dosierungen von Grüntee-Extrakt und/oder in Zusammenhang mit relevanten Vorerkrankungen oder Wechselwirkungen auf. Zusammenfassend zeigt die Studienlage, dass grüner Tee und Grüntee-Extrakte eine evidenzbasierte Wirksamkeit vor allem in der Gesundheitsfürsorge und Krankheitsprävention haben, zunehmend aber auch in der therapeutischen Anwendung erfolgreich eingesetzt werden.

Abstract

Green tea (Camellia sinensis) is a type of unfermented tea that largely retains the natural substance of fresh leaves. It is the second most popular beverage in the world after water. This article examines its historical and contemporary significance and presents some relevant studies. It also describes the ingredients of green tea as well as discussing the physiological and pharmacological effects, relevant side-effects or interactions and possible toxicologies according to their clinical relevance. Studies have shown that the tea polyphenols, with the catechins as the main representatives, have the greatest clinical significance and are pharmacologically active in a variety of ways. Studies have also demonstrated that green tea has antioxidant, anticancer, antibacterial, antiviral, hypoglycemic, cardiovascular and neuroprotective effects. Toxic effects such as hepatotoxicity are very rare and occur mainly at very high doses of green-tea extract and/or in connection with relevant pre-existing conditions or interactions. In summary, studies carried out to date show that green tea and green-tea extracts have an evidence-based efficacy, especially in health care and disease prevention, but they are also increasingly being used successfully in therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  • Afzal O, Dalhat MH, Abdulmalik SA. Green tea Catechins attenuate neurodegenerative diseases and cognitive deficits. Molecules. 2022;27(21):7604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aiya D. Standard table of food composition in Japan. 5. Aufl. 2000.

    Google Scholar 

  • Ambigaipalan P, Young W, Shahidi F. Epigallocatechin (EGC) esters as potential sources of antioxidants. Food Chem. 2020;309:125609.

    Article  CAS  PubMed  Google Scholar 

  • American College of Obstetricians and Gynecologists. „Moderate caffeine consumption during pregnancy“, Committee Opinion No. 462. Obstet Gynecol. 2010;(116). 2013 erneut bestätigt.

  • Anand P, Kaul D, Sharma M. Green tea polyphenol inhibits Mycobacterium tuberculosis survival within human macrophages. Int J Biochem Cell B. 2006;38:600–9.

    Article  CAS  Google Scholar 

  • Bae J, Kim N, Shin Y, et al. Activity of Catechins and their applications. Biomed Dermatol. 2020;4:8.

    Article  Google Scholar 

  • Balaji J, Chalamaiah M, Hanumanna P, et al. Mast cell stabilizing and anti-anaphylactic activity of aqueous extract of green tea (Camellia sinensis). Int J Vet Sci Med. 2014;2:89–94.

    Article  Google Scholar 

  • Balentine DA, Wiseman SA, Bouwens LC. The chemistry of tea flavonoids. Crit Rev Food Sci Nutr. 1997;37:693–704.

    Article  CAS  PubMed  Google Scholar 

  • Barbosa DS. Green tea polyphenolic compounds and human health. J Verbr Lebensm. 2007;2:407–13.

    Article  CAS  Google Scholar 

  • Belitz HD, Grosch W, Schiebler P. Lehrbuch der Lebensmittelchemie. 6. Aufl. Berlin, Heidelberg: Springer; 2008. S. 984.

    Google Scholar 

  • Bensky D, Clavey S, Stöger E. Materia medica: Chinese herbal medicine. 3. Aufl. Eastland Press; 2015.

    Google Scholar 

  • Betarbet R. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3:1301–6.

    Article  CAS  PubMed  Google Scholar 

  • Bettuzzi S, Brausi M, Rizzi F, et al. Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: A preliminary report from a one-year proof-of-principle study. Cancer Res. 2006;66:1234–40.

    Article  CAS  PubMed  Google Scholar 

  • Boehm K, Borrelli F, Ernst E, et al. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst Rev. 2009; https://doi.org/10.1002/14651858.CD005004.pub3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonuccelli G, Sotgia F, Lisanti MP. Matcha green tea (MGT) inhibits the propagation of cancer stem cells (CSCs), by targeting mitochondrial metabolism, glycolysis, and multiple cell signaling pathways. Aging. 2018;10:1867–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botten D, Fugallo G, Fraternali F, et al. Structural properties of green tea Catechins. J Phys Chem B. 2015;119:12860–7.

    Article  CAS  PubMed  Google Scholar 

  • Braal CL, Hussaarts KGAM, Seuren L, et al. Influence of green tea consumption on endoxifen stady-state concentration in breast cancer patients treated with tamoxifen. Breast Cancer Res Treat. 2020;184(1):107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brice C, Smith A. The effects of caffeine on simulated driving, subjective alertness and sustained attention. Hum Psychopharmacol Clin Exp. 2001;16:523–31.

    Article  CAS  Google Scholar 

  • Brody H. Tea. Nature. 2019;566(7742):1.

    Article  ADS  Google Scholar 

  • Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea—a review. J Am Coll Nutr. 2006;25:79–99.

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Li W, Wang G, et al. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome c‑mediated caspase‑3 activation pathway. Diabetes. 2002;51:1938–48.

    Article  CAS  PubMed  Google Scholar 

  • Cerezo-Guisado MI, Zur R, Lorenzo MJ, et al. Implication of Akt, ERK1/2 and alternative p38MAPK signalling pathways in human colon cancer cell apoptosis induced by green tea EGCG. Food Chem Toxicol. 2015;84:125–32.

    Article  CAS  PubMed  Google Scholar 

  • Chacko SM, Thambi PT, Kuttan R, et al. Beneficial effects of green tea: a literature review. Chin Med. 2010;5:13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakraborty M, Kamath JV, Bhattacharjee A. Potential interaction of green tea extract with hydrochlorothiazide on diuretic activity in ratsg. Int Sch Res Notices. 2014;2014:273908.

    PubMed  PubMed Central  Google Scholar 

  • Chatterjee P, Chandra S, Dey P, et al. Evaluation of anti-inflammatory effects of green tea and black tea: a comparative in vitro study. J Adv Pharm Technol Res. 2012;3:136–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K, Chen W, Liu SL, et al. Epigallocatechingallate attenuates myocardial injury in a mouse model of heart failure through tgfbeta1/smad3 signaling pathway. Mol Med Rep. 2018;17:7652–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Meng QJ, Liu HX, et al. Variance analysis of free amino acid composition in different kinds of tea. Food Sci Technol. 2017;42:258–63.

    Google Scholar 

  • Chen X, Chang L, Qu Y, et al. Tea polyphenols inhibit the proliferation, migration, and invasion of melanoma cells through the down-regulation of tlr4. Int J Immunopathol Pharmacol. 2018;32.

  • Cheng L, Liu Y, et al. A natural plant source-tea polyphenols, a potential drug for improving immunity and combating virus. Nutrients. 2022;14(3):550.

    Article  PubMed  Google Scholar 

  • Chengelis CP, Kirkpatrick JB, Regan KS, et al. 28-Day oral (gavage) toxicity studies of green tea catechins prepared for beverages in rats. Food Chem Toxicol. 2008;46:978–89.

    Article  CAS  PubMed  Google Scholar 

  • Chu D‑C, Juneja LR. General chemical composition of green tea and its infusion. In: Chemistry and applications of green tea. 1997. S. 14–21.

    Google Scholar 

  • Chu CJ, Lee SD, Hung TH, et al. Insulin resistance is a major determinant of sustained virological response in genotype 1 chronic hepatitis C patients receiving peginterferon alpha-2b plus ribavirin. Aliment Pharm Ther. 2010;29:46–54.

    Article  Google Scholar 

  • Chung LY, Cheung TC, Kong SK, et al. Induction of apoptosis by green tea catechins in human prostate cancer DU145 cells. Life Sci. 2001;68:1207–14.

    Article  CAS  PubMed  Google Scholar 

  • Chuu CP, Chen RY, Kokontis JM, et al. Suppression of androgen receptor signaling and prostate specific antigen expression by (−)-epigallocatechin-3-gallate in different progression stages of LNCaP prostate cancer cells. Cancer Lett. 2009;275:86–92.

    Article  CAS  PubMed  Google Scholar 

  • De Amorim LMN, Vaz SR, Cesário G, et al. Effect of green tea extract on bone mass and body composition in individuals with diabetes. J Funct Foods. 2018;40:589–94.

    Article  Google Scholar 

  • Deb S, Dutta A, Phukan BC, et al. Neuroprotective attributes of L‑theanine, a bioactive amino acid of tea, and its potential role in Parkinson’s disease therapeutics. Neurochem Int. 2019;129:104478.

    Article  CAS  PubMed  Google Scholar 

  • Du JY, Bai L, Bai BZ. The main chemical composition of tea. Agric Technol. 2003;23:53–5.

    Google Scholar 

  • EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific opinion on the safety of green tea catechins. EFSA J. 2018;16(4):5239.

    Article  Google Scholar 

  • Engelhardt U, Hempen C‑H. Chinesische Diätetik. 3. Aufl. München, Jena: Urban & Fischer, Elsevier; 2006.

    Google Scholar 

  • Enkhbat T, Nishi M, Yoshikawa K, et al. Epigallocatechin-3-gallate enhances radiation sensitivity in colorectal cancer cells through nrf2 activation and autophagy. Anticancer Res. 2018;.

  • Ettari R, Bonaccorso C, Micale N, et al. Development of novel peptidomimetics containing a vinyl sulfone moiety as proteasome inhibitors. Chem Med Chem. 2011;6:1228–37.

    Article  CAS  PubMed  Google Scholar 

  • Fakhri S, Abbaszadeh F, Moradi SZ. Effects of polyphenols on oxidative stress, inflammation, and interconnected pathways during spinal cord injury. Oxid Med Cell Longev. 2022;2022:8100195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Farhan M, Zafar A, Chibber S, et al. Mobilization of copper ions in human peripheral lymphocytes by catechins leading to oxidative DNA breakage: A structure activity study. Arch Biochem Biophys. 2015;580:31–40.

    Article  CAS  PubMed  Google Scholar 

  • Farhan M, Khan HY, Oves M, et al. Cancer therapy by catechins involves redox cycling of copper ions and generation of reactive oxygen species. Toxins. 2016;8:37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrucci LM, Cartmel B, Molinaro AM, et al. Tea, coffee, and caffeine and early-onset basal cell carcinoma in a case-control study. Eur J Cancer Prev. 2014;23:296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueira I, Garcia G, Pimpão RC, et al. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci Rep. 2017;7:11456.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Finger A, Engelhardt UH, Wray V. Flavonol glycosides in tea—Kaempferol and quercetin rhamnodiglucosides. J Sci Food Agric. 2006;55:313–21.

    Article  Google Scholar 

  • Fournier-Larente J, Morin MP, Grenier D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis. Arch Oral Biol. 2016;65:35–43.

    Article  CAS  PubMed  Google Scholar 

  • Fritz H, Seely D, Kennedy DA, et al. Green tea and lung cancer: a systematic review. Integr Cancer Ther. 2013;12(1):7–24.

    Article  CAS  PubMed  Google Scholar 

  • Fung S‑T, Ho CK, Choi S‑W, et al. Comparison of Catechin profiles in human plasma and urine after single dosing and regular intake of green tea (camellia sinensis). Br J Nutr. 2013;109:2199–207.

    Article  CAS  PubMed  Google Scholar 

  • Le Gal K, Ibrahim MX, Wiel C, et al. Antioxidants can increase melanoma metastasis in mice. Sci Transl Med. 2015;7(308).

  • Gao HR, Huang ZX, Li HM. Comparative study on the content of Tea polypheonls of sixteen kinds of China Tea. Food Res Dev. 2016;37:33–6.

    CAS  Google Scholar 

  • García ER, Gutierrez EA, de Melo FCSA, et al. Flavonoids effects on hepatocellular carcinoma in murine models: a systematic review. Evid Based Complement Alternat Med. 2018a;.

  • García ER, Gutierrez EA, de Melo FCSA, Novaes RD, Gonçalves RV. Flavonoids effects on hepatocellular carcinoma in murine models: a systematic review. Evid Based Complement Alternat Med. 2018b;.

  • Golden EB, Lam PY, Kardosh A, et al. Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood. 2009;113:5927–37.

    Article  CAS  PubMed  Google Scholar 

  • González-García E, Puchalska P, Marina ML, et al. Fractionation and identification of antioxidant and angiotensin-converting enzyme-inhibitory peptides obtained from plum (Prunus domestica L.) stones. J Funct Foods. 2015;19:376–84.

    Article  Google Scholar 

  • Gould GW, Holman GD. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993;295:329–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med. 1992;21:334–50.

    Article  CAS  PubMed  Google Scholar 

  • Guan QX, Dong WF, Li HJ, et al. Extraction and stability of pigment from green tea. Food Ind. 2017;38:100–2.

    Google Scholar 

  • Guo SH, Yan JQ, Yang TB, et al. Protective effects of green tea polyphenols in the 6‑OHDA rat model of parkinson’s disease through inhibition of ROS-NO pathway. Biol Psychiaty. 2007;62:1353–62.

    Article  CAS  Google Scholar 

  • Guo Y, Zhi F, Chen P, et al. Green tea and the risk of prostate cancer: A systematic review and meta-analysis. Medicine. 2017;96(13).

  • Gupta S, Ahmad N, Nieminen AL, et al. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (−)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Toxicol Appl Pharmacol. 2000;164:82–90.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton-Miller JM. Antimicrobial properties of tea (camellia sinensis L.) antimicrob. Agents Chin. 1995;39:2375–7.

    Article  CAS  Google Scholar 

  • Harper CE, Patel BB, Wang J, et al. Epigallocatechin-3-gallate suppresses early stage, but not late stage prostate cancer in TRAMP mice: Mechanisms of action. Prostate. 2007;67:1576–89.

    Article  CAS  PubMed  Google Scholar 

  • Hartley L, Flowers N, Holmes J, et al. Green and black tea for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013; https://doi.org/10.1002/14651858.CD009934.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hempen C‑H, Fischer T. Leitfaden Chinesische Phytotherapie. 2. Aufl. München, Jena: Urban & Fischer, Elsevier; 2013. S. 128.

    Google Scholar 

  • Holzman C, Senagore P, Tian Y, et al. Maternal catecholamine levels in midpregnancy and risk of preterm delivery. Epidemiol Rev. 2009;170(8):1014–24.

    Google Scholar 

  • Hong OY, Noh EM, Jang HY, et al. Epigallocatechin gallate inhibits the growth of mda-mb-231 breast cancer cells via inactivation of the beta-catenin signaling pathway. Oncol Lett. 2017;14:441–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Webster D, Cao J, et al. The safety of green tea and green tea extract consumption in adults—Results of a systematic review. Regul Toxicol Pharmacol. 2018;95:412–33.

    Article  CAS  PubMed  Google Scholar 

  • Huang HT. Han gastronomy—Chinese cuisine in statu nascendi. Interdiscip Sci Rev. 1990;15(2):139–52.

    Article  ADS  Google Scholar 

  • Huang SF, Horng CT, Hsieh YS, et al. Epicatechin-3-gallate reverses tgf-beta1-induced epithelial-to-mesenchymal transition and inhibits cell invasion and protease activities in human lung cancer cells. Food Chem Toxicol. 2016;94:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Chen H, Zhou L, et al. Association between green tea intake and risk of gastric cancer: a systematic review and dose-response meta-analysis of observational studies. Public Health Nutr. 2017;20(17):3183–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang YW, Zhu QQ, Yang XY, et al. Wound healing can be improved by (−)-epigallocatechin gallate through targeting notch in streptozotocin-induced diabetic mice. FASEB J. 2018;.

  • Ikeda A, Iso H, Yamagishi K, et al. Plasma tea catechins and risk of cardiovascular disease in middle-aged japanese subjects: the jphc study. Atherosclerosis. 2018;277:90–7.

    Article  CAS  PubMed  Google Scholar 

  • Isbrucker RA, Edwards JA, Wolz E, et al. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: dermal, acute and short-term toxicity studies. Food Chem Toxicol. 2006;44:636–50.

    Article  CAS  PubMed  Google Scholar 

  • Jia L, Liu FT. Why bortezomib cannot go with ‘green’? Cancer Biol Med. 2013;10(4):206–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang HY, Jiang Y. Determination of 5 phenoic acids in tea by high perfor-mance liquid chromatography. Sci Technol Food Ind. 2004;25:122–4.

    CAS  Google Scholar 

  • Jiang F, Chen W, Yi K, et al. The evaluation of catechins that contain a galloyl moiety as potential HIV‑1 integrase inhibitors. Clin Immunol. 2010;137:347–56.

    Article  CAS  PubMed  Google Scholar 

  • Jigisha A, Nishant R, Navin K. Green tea: a magical herb with miraculous outcomes. Int Res J Pharm. 2012;3:139–48.

    Google Scholar 

  • Jing S. Xinxiu bencao. Shanghai. 1985. („Neu überarbeitete Drogenkunde“, 新修本草), 659 verfasst, Reprint einer Ming-Ausgabe.

    Google Scholar 

  • John CK, Tina CT. Chinese medical herbology and pharmacology. 1. Aufl. Art of Medicine Press; 2003. S. 132.

    Google Scholar 

  • Kakutani S, Watanabe H, Murayama N. Green Tea intake and risks for Dementia, alzheimer’s disease, mild cognitive impairment, and cognitive impairment: a systematic review. Nutrients. 2019;11(5):1165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang KW, Oh SJ, Ryu SY, et al. Evaluation of the total oxy-radical scavenging capacity of catechins isolated from green tea. Food Chem. 2010;121:1089–94.

    Article  CAS  Google Scholar 

  • Kang NJ, Jung SK, Lee KW, et al. Myricetin is a potent chemopreventive phytochemical in skin carcinogenesis. Ann N Y Acad Sci. 2011;1229:124–32.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kellogg JJ, Graf TN, Paine MF, et al. Comparison of metabolomics approaches for evaluating the variability of complex botanical preparations: green tea (camellia sinensis) as a case study. J Nat Prod. 2017;80:1457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalaf AA, Moselhy WA, Abdel-Hamed MI. The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicology. 2012;33:280–9.

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Mukhtar H. Modulation of signaling pathways in prostate cancer by green tea polyphenols. Biochem Pharmacol. 2013;85:667–72.

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Mukhtar H. Tea polyphenols in promotion of human health. Nutrients. 2018;11(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan N, Mukhtar H. Tea polyphenols in promotion of human health. Nutrients. 2019;11(1):39.

    Article  Google Scholar 

  • Kim E, Han SY, Hwang K, et al. Antioxidant and cytoprotective effects of (−)-epigallocatechin-3-(3″-O-methyl) Gallate. Int J Mol Sci. 2019;20(16):3993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H‑S, Quon MJ, Redox Biol KJ‑A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3‑gallate. 2014;2:187–95.

  • Klivenyi P, Andreassen OA, Ferrante RJ, et al. Inhibition of neuronal nitric oxide synthase protects against MPTP toxicity. Neuroreport. 2000;11:1265–8.

    Article  CAS  PubMed  Google Scholar 

  • Koch W, Kukula-Koch W, Komsta Ł, et al. Green tea quality evaluation based on its catechins and metals composition in combination with chemometric analysis. Molecules. 2018;23:1689.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kochman J, Jakubczyk K, Antoniewicz J, et al. Health benefits and chemical composition of Matcha green tea: a review. Molecules. 2020;26(1):85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Konieczynski P, Viapiana A, Wesolowski M. Comparison of infusions from black and green teas (camellia sinensis L. Kuntze) and Erva-mate (Ilex paraguariensis A. St.-Hil.) based on the content of essential elements, secondary metabolites, and antioxidant activity. Food Anal Method. 2017;10:3063–70.

    Article  Google Scholar 

  • Kudva P, Tabasum ST, Shekhawat NK. Effect of green tea catechin, a local drug delivery system as an adjunct to scaling and root planing in chronic periodontitis patients: a clinicomicrobiological study. J Indian Soc Periodontol. 2011;15:39–45.

    Article  PubMed  Google Scholar 

  • Kuhn D. Die Song-Dynastie (960–1279). Weinheim: Acta Humaniora; 1987.

    Google Scholar 

  • Kushiyama M, Shimazaki Y, Murakami M, et al. Relationship between Intake of Green Tea and Periodontal Disease. J Periodontol. 2009;80:372–7.

    Article  PubMed  Google Scholar 

  • Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010;501:65–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert JD, Kennett MJ, Sang S, et al. Hepatotoxicity of high oral dose (−)-epigallocatechin-3-gallate in mice. Food Chem Toxicol. 2010;48:409–16.

    Article  CAS  PubMed  Google Scholar 

  • Lamprecht M, Jowko E. Green tea catechins and sport performance. Chapter 8. In: Antioxidants in sport nutrition. Boca Raton: CRC Press/Taylor & Francis; 2015.

    Google Scholar 

  • Lawless MW, O’Byrne KJ, Gray SG. Targeting oxidative stress in cancer. Expert Opin Ther Targets. 2010;14:1225–45.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence HR, Kazi A, Luo Y, et al. Synthesis and biological evaluation of naphthoquinone analogs as a novel class of proteasome inhibitors. Bioorg Med Chem. 2010;18:5576–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecumberri E, Dupertuis YM, Miralbell R, et al. Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clin Nutr. 2013;32:894–903.

    Article  CAS  PubMed  Google Scholar 

  • Lee PMY, Ng CF, Liu ZM, et al. Reduced prostate cancer risk with green tea and epigallocatechin 3‑gallate intake among hong kong chinese men. Prostate Cancer Prostatic Dis. 2017;20:318–22.

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Kwak J, Choi HK, et al. Egcg suppresses prostate cancer cell growth modulating acetylation of androgen receptor by anti-histone acetyltransferase activity. Int J Mol Med. 2012;30:69–74.

    CAS  PubMed  Google Scholar 

  • Li M. Study on the Chemical Composition of Tea. Shenyang: Shenyang Pharmaceutical University; 2008. Master’s Thesis.

    Google Scholar 

  • Li G, Zhang Y, Thabane L, et al. Effect of green tea supplementation on blood pressure among overweight and obese adults: a systematic review and meta-analysis. J Hypertens. 2015;33(2):243–54.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Tse LA, Chan WC, et al. Evaluation of breast cancer risk associated with tea consumption by menopausal and estrogen receptor status among Chinese women in Hong Kong. Cancer Epidemiol. 2016;40:73–8.

    Article  PubMed  Google Scholar 

  • Li X, Li S, Chen M, et al. (−)-epigallocatechin-3-gallate (egcg) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of pxr/car-mediated phase ii metabolism in diabetic mice. Food Funct. 2018;9:4651–63.

    Article  CAS  PubMed  Google Scholar 

  • Lin LC, Wang MN, Tsai TH. Food-drug interaction of (−)-epigallocatechin-3-gallate on the pharmacokinetics of irinotecan and the metabolite SN-38. Chem Biol Interact. 2008;174:177–82.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Linck G. Leib und Körper. Peter Lang; 2001. S. 142.

    Google Scholar 

  • Liu C, Li P, Qu Z, et al. Advances in the antagonism of epigallocatechin-3-gallate in the treatment of digestive tract tumors. Molecules. 2019;24(9).

  • Liu FT, Agrawal SG, Movasaghi Z, et al. Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib. Blood. 2008;112:3835–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PP, Zhong XY, Xu YQ, et al. Study on organic acids contents in tea leaves and its extracting characteristics. J Tea Sci. 2013;33:405–10.

    Google Scholar 

  • Liu Z, Bruins ME, Ni L, et al. Green and black Tea phenolics: bioavailability, transformation by colonic microbiota, and modulation of colonic Microbiota. J Agric Food Chem. 2018;66:8469–77.

    Article  CAS  PubMed  Google Scholar 

  • Luo KW, Ko CH, Yue GG, et al. Green tea (Camellia sinensis) extract inhibits both the metastasis and osteolytic components of mammary cancer 4T1 lesions in mice. J Nutr Biochem. 2014;25:395–403.

    Article  CAS  PubMed  Google Scholar 

  • Ma YW, Shi YK, Li WM, et al. Epigallocatechin-3-gallate regulates the expression of Kruppel-like factor 4 through myocyte enhancer factor 2A. Cell Stress Chaperon. 2013;19:217–26.

    Article  Google Scholar 

  • Maeda-Yamamoto M. Human clinical studies of tea polyphenols in allergy or life style-related deseases. Curr Pharm Des. 2013;19:6148–55.

    Article  CAS  PubMed  Google Scholar 

  • Maiolini M, Gause S, Taylor J, et al. The war against tuberculosis: a review of natural compounds and their derivatives. Molecules. 2020;25(13):3011.

    Article  CAS  PubMed  Google Scholar 

  • Maity R, Chatterjee M, Banerjee A, et al. Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells. Mater Sci Eng C Mater Biol Appl. 2019;104:109909.

    Article  CAS  PubMed  Google Scholar 

  • Mancini E, Beglinger C, Drewe J, et al. Green tea effects on cognition, mood and human brain function: a systematic review. Phytomedicine. 2017;34:26–37.

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Maor G, Youdim MBH. Iron and α‑synuclein in the substantia nigra of MPTP-treated mice. J Mol Neurosci. 2004;24:401–16.

    Article  CAS  PubMed  Google Scholar 

  • Martimianaki G, Alicandro G, Pelucchi C, et al. Tea consumption and gastric cancer: a pooled analysis from the Stomach cancer Pooling (StoP) Project consortium. Br J Cancer. 2022;127(4):726–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marzaro G, Gandin V, Marzano C, et al. Psoralenquinones as a novel class of proteasome inhibitors: design, synthesis and biological evaluation. Chem Med Chem. 2011;6:996–1000.

    Article  CAS  PubMed  Google Scholar 

  • Mazzanti G, Menniti-Ippolito F, Moro PA, et al. Hepatotoxicity from green tea: a review of the literature and two unpublished cases. Eur J Clin Pharmacol. 2009;65:331–41.

    Article  PubMed  Google Scholar 

  • Mckay DL, Blumberg JB. The role of tea in human health: an update. J Am Coll Nutr. 2002;21:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Mhatre S, Srivastava T, Naik S, et al. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: a review. Phytomedicine. 2020;85:153286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mi Y, Liu X, Tian H, et al. Egcg stimulates the recruitment of brite adipocytes, suppresses adipogenesis and counteracts tnf-alpha-triggered insulin resistance in adipocytes. Food Funct. 2018;9:3374–86.

    Article  CAS  PubMed  Google Scholar 

  • Miyata Y, Matsuo T, Araki K, et al. Anticancer effects of green tea and the underlying molecular mechanisms in bladder cancer. Medicines. 2018;5(3):87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata Y, Shida Y, Hakariya T, et al. Anti-cancer effects of green tea polyphenols against prostate cancer. Molecules. 2019;24(1).

  • Miyawaki M, Sano H, Maeda-Yamamoto M, et al. “Benifuuki” extract reduces serum levels of Lectin-like oxidized low-density lipoprotein receptor‑1 Ligands containing apolipoprotein B: a double-blind placebo-controlled randomized trial. Nutrients. 2018;10(7):924.

    Article  PubMed  PubMed Central  Google Scholar 

  • Modernelli A, Naponelli V, Giovanna Troglio M, et al. EGCG antagonizes Bortezomib cytotoxicity in prostate cancer cells by an autophagic mechanism. Sci Rep. 2015;5:15270.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Momose Y, Maeda-Yamamoto M, Nabetani H. Systematic review of green tea epigallocatechin gallate in reducing low-density lipoprotein cholesterol levels of humans. Int J Food Sci Nutr. 2016;.

  • Moradzadeh M, Hosseini A, Erfanian S, et al. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer t47d cells through down-regulation of pi3k/akt and telomerase. Pharmacol Rep. 2017;69:924–8.

    Article  CAS  PubMed  Google Scholar 

  • Morita O, Knapp JF, Tamaki Y, et al. Effects of green tea catechin on embryo/fetal development in rats. Food Chem Toxicol. 2009;47:1296–303.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Suzuki K, Toda M, et al. Inhibition of the infectivity of influenza virus by tea polyphenols. Antivir Res. 1993;21:289–99.

    Article  CAS  PubMed  Google Scholar 

  • Nan W, Zhonghang X, Keyan C, et al. Epigallocatechin-3-gallate reduces neuronal apoptosis in rats after middle cerebral artery occlusion injury via pi3k/akt/enos signaling pathway. Biomed Res Int. 2018;2018:6473580.

    Article  PubMed  PubMed Central  Google Scholar 

  • Newsome BJ, Petriello MC, Han SG, et al. Green tea diet decreases PCB 126-induced oxidative stress in mice by up-regulating antioxidant enzymes. J Nutr Biochem. 2014;25:126–35.

    Article  CAS  PubMed  Google Scholar 

  • Ni CX, Gong H, Liu Y, et al. Green tea consumption and the risk of liver cancer: a meta-analysis. Nutr Cancer. 2017;69(2):211–20.

    Article  PubMed  Google Scholar 

  • Nibir YM, Sumit AF, Akhand AA, et al. Comparative assessment of total polyphenols, antioxidant and antimicrobial activity of different tea varieties of Bangladesh. Asian Pac J Trop Biol. 2017;7:352–7.

    Article  Google Scholar 

  • Oh CM, Oh IH, Choe BK, et al. Consuming green tea at least twice each day is associated with reduced odds of chronic obstructive lung disease in middle-aged and older korean adults. J Nutr. 2018;148:70–6.

    Article  PubMed  Google Scholar 

  • Olanow CW, Perl DP, DeMartino GN, et al. Lewy-body formation is an aggresome-related process: a hypothesis. Lancet Neurol. 2004;3:496–503.

    Article  PubMed  Google Scholar 

  • Onakpoya I, Spencer E, Heneghan C, et al. The effect of green tea on blood pressure and lipid profile: a systematic review and meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis. 2014;24(8):823–36.

    Article  CAS  PubMed  Google Scholar 

  • Pan SY, Nie Q, Tai HC, et al. Tea and tea drinking: China’s outstanding contributions to the mankind. Chin Med. 2022;17(1):27.

    Article  CAS  PubMed  Google Scholar 

  • Parish M, Massoud G, Hazimeh D, et al. Green Tea in reproductive cancers: could treatment be as simple? Cancers. 2023;15(3):862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JW, Hong JS, Lee KS, et al. Green tea polyphenol (−)-epigallocatechin gallate reduces matrix metalloproteinase‑9 activity following transient focal cerebral ischemia. J Nutr Biochem. 2010;21:1038–44.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Burillo S, Navajas-Porras B, López-Maldonado A, et al. Green tea and its relation to human gut microbiome. Molecules. 2021;26(13):3907.

    Article  PubMed  Google Scholar 

  • Polito CA, Cai ZY, Shi YL. Association of Tea consumption with risk of Alzheimer’s disease and anti-beta-Amyloid effects of Tea. Nutrients. 2018;10(5).

  • Porkert M. Klinische chinesische Pharmakologie. 2. Aufl. Dinkelscherben: Phainon; 1994. S. 155.

    Google Scholar 

  • Prasanth MI, Sivamaruthi BS, Chaiyasut C, et al. Review of the role of Green Tea (camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients. 2019;11(2):474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price J, Verma S, Li RK. Diabetic heart dysfunction: is cell transplantation a potential therapy? Heart Fail Rev. 2003;8:213–9.

    Article  PubMed  Google Scholar 

  • Qi GY, Mi YS, Fan R, et al. Tea polyphenols ameliorates neural redox imbalance and mitochondrial dysfunction via mechanisms linking the key circadian regular Bmal1. Food Chem Toxicol. 2017;110:189–99.

    Article  CAS  PubMed  Google Scholar 

  • Qiu L, Sautter J, Gu D. Associations between frequency of tea consumption and health and mortality: Evidence from old Chinese. Br J Nutr. 2012;108:1686–97.

    Article  CAS  PubMed  Google Scholar 

  • Qiu X, et al. (−)-Epigallocatechin-3-gallate plays an antagonistic role in the antitumor effect of bortezomib in myeloma cells voa activating Wnt/ß-catenin signaling pathmay. Adv Clin Exp Med. 2022;.

  • Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem. 2011;22(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  • Rana A, Samtiya M, Dhewa T, et al. Health benefits of polyphenols: a concise review. J Food Biochem. 2022;46(10):e14264.

    Article  CAS  PubMed  Google Scholar 

  • Randazzo W, Falcó-Ferrando I, Aznar R, et al. Effect of green tea extract on enteric viruses and its application as natural sanitizer. Food Microbiol. 2017;66:150–6.

    Article  CAS  PubMed  Google Scholar 

  • Rawangkan A, Wongsirisin P, Namiki K, et al. Green tea catechin is an alternative immune checkpoint inhibitor that inhibits pd-l1 expression and lung tumor growth. Molecules. 2018;23:2071.

    Article  PubMed  Google Scholar 

  • Roomi MW, Kalinovsky T, Roomi NM, et al. In vitro and in vivo effects of a nutrient mixture on breast cancer progression. Int J Oncol. 2014;44:1933–44.

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg DO, Zhang L. Mechanisms underlying the anti-depressive effects of regular tea consumption. Nutrients. 2019;11(6).

  • Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57:1–24.

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury S, Halenar M, Michalcova K, et al. Green tea extract affects porcine ovarian cell apoptosis. Reprod Biol. 2018;18:94–8.

    Article  PubMed  Google Scholar 

  • Saeed NM, El-Naga RN, El-Bakly WM, et al. Epigallocatechin-3-gallate pretreatment attenuates doxorubicin-induced cardiotoxicity in rats: A mechanistic study. Biochem Pharmacol. 2015;95:145–55.

    Article  CAS  PubMed  Google Scholar 

  • Sak K. Dietary flavonoids with catechol moiety inhibit anticancer action of Bortezomib: What about the other boronic acid-based drugs? Curr Cancer Drug Targets. 2022;.

  • Salminen WF, Yang X, Shi Q, et al. Green tea extract can potentiate acetaminophen-induced hepatotoxicity in mice. Food Chem Toxicol. 2012;50:1439–46.

    Article  CAS  PubMed  Google Scholar 

  • Samavat H, Ursin G, Emory TH, et al. A randomized controlled trial of green tea extract supplementation and mammographic density in postmenopausal women at increased risk of breast cancer. Cancer Prev Res. 2017;10:710–8.

    Article  CAS  Google Scholar 

  • Scholey A, Downey LA, Ciorciari J, et al. Acute neurocognitive effects of Epigallocatechin Gallate (EGCG). Appetite. 2012;58:767–70.

    Article  CAS  PubMed  Google Scholar 

  • Schulze J, Melzer L, Smith L, et al. Green tea and its extracts in cancer prevention and treatment. Beverages. 2017;3:17.

    Article  Google Scholar 

  • Serisier S, Leray V, Poudroux W, et al. Effects of green tea on insulin sensitivity, lipid profile and expression of PPARalpha and PPARgamma and their target genes in obese dogs. Br J Nutr. 2008;99:1208–16.

    Article  CAS  PubMed  Google Scholar 

  • Shankar S, Marsh L, Srivastava RK. EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice through modulation of FkHRL1/FOXO3a and neuropilin. Mol Cell Biochem. 2013;372:83–94.

    Article  CAS  PubMed  Google Scholar 

  • Sharangi AB. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)—A review. Food Res Int. 2009;42:529–35.

    Article  CAS  Google Scholar 

  • Sharma A, Gupta S, Sarethy IP, et al. Green tea extract: possible mechanism and antibacterial activity on skin pathogens. Food Chem. 2012;135:672–5.

    Article  CAS  PubMed  Google Scholar 

  • Sharma C, Nusri Qel A, Begum S, et al. (−)-Epigallocatechin-3-gallate induces apoptosis and inhibits invasion and migration of human cervical cancer cells. Asian Pac J Cancer Prev. 2012;13:4815–22.

    Article  PubMed  Google Scholar 

  • Sharma E, Joshi R, Gulati A. L‑Theanine: an astounding sui generis integrant in tea. Food Chem. 2018;242:601–10.

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Murali A, Singh SK, et al. Epigallocatechin gallate, an active green tea compound inhibits the Zika virus entry into host cells via binding the envelope protein. Int J Biol Macromol. 2017;104:1046–54.

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Montes de Oca MK, Alkeswani AR, et al. Tea polyphenols for the prevention of uvb-induced skin cancer. Photodermatol Photoimmunol Photomed. 2018;34:50–9.

    Article  CAS  PubMed  Google Scholar 

  • Shi D. Zhongyi shiliao yingyang xue („Ernährungslehre und Diätetik der traditionellen chinesischen Medizin“). Beijing. 1988. S. 42.

    Google Scholar 

  • Shin CM, Lee DH, Seo AY, et al. Green tea extracts for the prevention of metachronous colorectal polyps among patients who underwent endoscopic removal of colorectal adenomas: A randomized clinical trial. Clin Nutr. 2018;37(2):452–8.

    Article  CAS  PubMed  Google Scholar 

  • Shirakami Y, Shimizu M, Adachi S, et al. (−)-Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor-vascular endothelial growth factor receptor axis. Cancer Sci. 2009;100:1957–62.

    Article  CAS  PubMed  Google Scholar 

  • Si W, Gong J, Tsao R, et al. Bioassayguided purification and identification of antimicrobial components in Chinese green tea extract. J Chromatogr A. 2006;1125:204–10.

    Article  CAS  PubMed  Google Scholar 

  • Simoons FJ. Food in China. A cultural and historical inquiry. Boca Raton, Ann Arbor, Boston: CRC Press; 1991. S. 441.

    Google Scholar 

  • Song J, Chu SS, Cui Y, et al. Circadian rhythm resynchronization improved isoflurane-induced cognitive dysfunction in aged mice. Exp Neurol. 2018;306:45–54.

    Article  CAS  PubMed  Google Scholar 

  • Song JM, Lee KH, Seong BL. Antiviral effect of catechins in green tea on influenza virus. Antivir Res. 2005;68:66–74.

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Li X, Gong X, et al. Green tea polyphenols improve isoflurane-induced cognitive impairment via modulating oxidative stress. J Nutr Biochem. 2019;73:108213.

    Article  CAS  PubMed  Google Scholar 

  • Soong WT, Chao KY, Jang CS, et al. Long-term effect of increased lead absorption on intelligence of children. Arch Environ Health. 1999;54:297–301.

    Article  CAS  PubMed  Google Scholar 

  • Subramani C, Natesh RK. Molecular mechanisms and biological implications of green Tea polyphenol, (−)-epigallocatechin-3-gallate. J Pharma Biosci Technol. 2013;1:54–63.

    Google Scholar 

  • Sun Simiao (auch Sun Simo). Qianjin fang („Wichtige Rezepturen, die tausend Goldstücke wert sind“, 千金要方), Kap. 26, 650/659 verfasst, Beijing 1992 reprintet von 1955.

  • Sun T, Ho CT. Antiradical efficiency of tea components. J Food Lipids. 2007;8:231–8.

    Article  Google Scholar 

  • Sundaram R, Naresh R, Shanthi P, et al. Modulatory effect of green tea extract on hepatic key enzymes of glucose metabolism in streptozotocin and high fat diet induced diabetic rats. Phytomedicine. 2013;20:577–84.

    Article  CAS  PubMed  Google Scholar 

  • Susilowati A. Diuretic effect of the aqueous extract of green tea leaves. Adv Health Sci Res. 2019;15:33–6.

    Google Scholar 

  • Tachibana H, Koga K, Fujimura Y, et al. A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol. 2004;11:380–1.

    Article  CAS  PubMed  Google Scholar 

  • Taddei ML, Giannoni E, Comito G, et al. Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett. 2013;341(1):80–96.

    Article  CAS  PubMed  Google Scholar 

  • Tai KK, Truong DD. (−)-Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, reduces dichlorodiphenyl-trichloroethane (DDT)-induced cell death in dopaminergic SHSY-5Y cells. Neurosci Lett. 2010;482:183–7.

    Article  CAS  PubMed  Google Scholar 

  • Tan HP, Ye SR, Chen L, et al. Determination overview of organic acids in tea. China Meas Test Technol. 2008;34:77–80.

    CAS  Google Scholar 

  • Tang J, Zheng JS, Fang L, et al. Tea consumption and mortality of all cancers, CVD and all causes: a meta-analysis of eighteen prospective cohort studies. Br J Nutr. 2015;114(5):673–83.

    Article  CAS  PubMed  Google Scholar 

  • Tatti S, Swinehart JM, Thielert C, et al. Sinecatechins, a defined green tea extract, in the treatment of external anogenital warts: a randomized controlled trial. Obstet Gynecol. 2008;111:1371–9.

    Article  PubMed  Google Scholar 

  • Trnková L, Ricci D, Grillo C, et al. Green tea catechins can bind and modify ERp57/PDIA3 activity. Biochim Biophys Acta. 2013;1830:2671–82.

    Article  PubMed  Google Scholar 

  • Tsai C‑F, Hsu Y‑W, Ting H‑C, et al. The in vivo antioxidant and antifibrotic properties of green Tea (camellia sinensis, Theaceae). Food Chem. 2013;136:1337–44.

    Article  CAS  PubMed  Google Scholar 

  • Unno K, Nakamura Y. Green tea suppresses brain aging. Molecules. 2021;26(16):4897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JR. A brief history of Chinese tea and its spreading. Sci Conserv Archaeol. 2019;31:140–6.

    CAS  Google Scholar 

  • Wang HF, Provan GJ, Helliwell K. Tea flavonoids: their functions, utilisation and analysis. Trends Food Sci Technol. 2000;11:152–60.

    Article  CAS  Google Scholar 

  • Wang HJ, Shi SS, Bao B, et al. Structure characterization of an arabinogalactan from green tea and its anti-diabetic effect. Carbohyd Polym. 2015;124:98–108.

    Article  CAS  Google Scholar 

  • Wang LL, Yang JG, Lin QX, et al. Determination of 10 organic acid contents in tea using high performance liquid chromatography-diode array detector. J Zhejiang Univ. 2019;45:47–53.

    Google Scholar 

  • Wang YF, Mao FF, Wei XL. Characterization and antioxidant activities of poly-saccharides from leaves, flowers and seeds of green tea. Carbohyd Polym. 2012;88:146–53.

    Article  CAS  Google Scholar 

  • Wang YQ, Li QS, Zheng XQ, et al. Antiviral effects of green tea EGCG and its potential application against COVID-19. Molecules. 2021;26:3962.

    Article  CAS  PubMed  Google Scholar 

  • Wei R, Mao L, Xu P, et al. Suppressing glucose metabolism with epigallocatechin-3-gallate (egcg) reduces breast cancer cell growth in preclinical models. Food Funct. 2018;9:5682–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikan N, Smith DR. Zika virus: History of a newly emerging arbovirus. Lancet Infect Dis. 2016;16:119–26.

    Article  Google Scholar 

  • Wu DY. Green tea EGCG, T‑cell function, and T‑cell-mediated autoimmune encephalomyelitis. J Investig Med. 2016;64:1213–9.

    Article  PubMed  Google Scholar 

  • Wu XY. Four types of tea composition analysis. Liaoning: Liaoning Normal University; 2011. Master’s Thesis.

    Google Scholar 

  • Wu LY, Juan CC, Ho L, et al. Effect of green tea supplementation on insulin sensitivity in Sprague? Dawley rats. J Agric Food Chem. 2004;52:643–8.

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Wang J, Deng F, et al. Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus in vitro. Antivir Res. 2008;78:242–9.

    Article  CAS  PubMed  Google Scholar 

  • Xu LJ, Xia GB, Luo ZS, et al. UHPLC analysis of major functional components in six types of Chinese teas: constituent profile and origin consideration. Food Sci Technol Braz. 2019;102:52–7.

    CAS  Google Scholar 

  • Xu YQ, Zhang YN, Chen JX, et al. Quantitative analyses of the bitterness and astringency of catechins from green tea. Food Chem. 2018;258:16–24.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Honda M, Ikigai H, et al. Inhibitory effects of (+)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antivir Res. 2002;53:19–34.

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Zhang J, Li X, et al. Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress. J Nutr Biochem. 2010;21:741–8.

    Article  Google Scholar 

  • Yang S. The divine farmer’s materia medica: a translation of the Shen Nong Ben Cao Jing. Boulder: Blue Poppy Press; 1998.

    Google Scholar 

  • Yang YJ. Chemical evaluation on Tea quality during early-stage of breeding programII. Relationship between the biochemical component content in the shoots and the quality of green Tea. J Tea Sci. 1991;11:127–31.

    Google Scholar 

  • Yang J, Liu RH. The phenolic profiles and antioxidant activity in different types of tea. Int J Food Sci Tech. 2013;48:163–71.

    Article  CAS  Google Scholar 

  • Yarmolinsky J, Gon G, Edwards P. Effect of tea on blood pressure for secondary prevention of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2015;73(4):236–46.

    Article  PubMed  Google Scholar 

  • Yasuda T, Miyata Y, Nakamura Y, et al. High consumption of green tea suppresses urinary tract recurrence of Urothelial cancer via down-regulation of human antigen‑R expression in never smokers. In Vivo. 2018;32(4):721–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuhiko A, Satoshi U, Koh-ichi S, et al. Effect of green tea rich in γ‑aminobutyric acid on blood pressure of Dahl salt-sensitive rats. Am J Hypertens. 1995;8:74–9.

    Article  Google Scholar 

  • Yee Y, Koo M. Anti-Helicobacter pylori activity of Chinese tea: in vitro study. Aliment Pharm Ther. 2000;14:635–8.

    Article  CAS  Google Scholar 

  • Yeung KS, Gubili J, Mao JJ. Herb-drug interactions in cancer care. Oncology. 2018;32(10):516–20.

    PubMed  Google Scholar 

  • Yoneda Y, Kuramoto N, Kawada K. The role of glutamine in neurogenesis promoted by the green tea amino acid theanine in neural progenitor cells for brain health. Neurochem Int. 2019;129:104505.

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Samavat H, Dostal AM, et al. Effect of green tea supplements on liver enzyme elevation: results from a randomized intervention study in the United States. Cancer Prev Res. 2017;10:571–9.

    Article  CAS  Google Scholar 

  • Zhang C, Qin YY, Wei X, et al. Tea consumption and risk of cardiovascular outcomes and total mortality: a systematic review and meta-analysis of prospective observational studies. Eur J Epidemiol. 2015;30(2):103–13.

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Huang J, Xie X, et al. Dietary intakes of mushrooms and green tea combine to reduce the risk of breast cancer in Chinese women. Int J Cancer. 2009;124:1404–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Yuan H, Zhang C, et al. Epigallocatechin gallate improves insulin resistance in hepg2 cells through alleviating inflammation and lipotoxicity. Diabetes Res Clin Pract. 2018a;142:363–73.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Hu L, Chen L, et al. (−)-epigallocatechin-3-gallate, the major green tea catechin, regulates the desensitization of beta1 adrenoceptor via grk2 in experimental heart failure. Inflammopharmacol. 2018b;26:1081–91.

    Article  CAS  Google Scholar 

  • Zhao YR, Wang SL. Research progress of Anthocyanin. J Anhui Agric Sci. 2008;36:3095–7.

    Google Scholar 

  • Zhao J, Zhao XY, Tian JB, et al. Theanine attenuates hippocampus damage of rat cerebral ischemia-reperfusion injury by inhibiting HO‑1 expression and activating ERK1/2 pathway. Life Sci. 2020;241:117160.

    Article  CAS  PubMed  Google Scholar 

  • Zhao LY, Cao CY, Chen GT, et al. Determination of nine mineral elements in three kinds of green tea with two grades by ICP-AES. Spectrosc Spectr Anal. 2011;31:1119–21.

    CAS  Google Scholar 

  • Zhao T, Li C, Wang S, et al. Green Tea (camellia sinensis): a review of its phytochemistry, pharmacology, and toxicology. Molecules. 2022;27(12):3909–3902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong J, Xu C, Reece EA, et al. The green tea polyphenol EGCG alleviates maternal diabetes-induced neural tube defects by inhibiting DNA hypermethylation. Am J Obstet Gynecol. 2016;215:e1–e368.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Staab.

Ethics declarations

Interessenkonflikt

L. Staab gibt an, dass kein Interessenkonflikt besteht. Der Verlag erklärt, dass die inhaltliche Qualität des Beitrags von zwei unabhängigen Gutachtern geprüft wurde. Werbung in dieser Zeitschriftenausgabe hat keinen Bezug zur CME-Fortbildung. Der Verlag garantiert, dass die CME-Fortbildung sowie die CME-Fragen frei sind von werblichen Aussagen und keinerlei Produktempfehlungen enthalten. Dies gilt insbesondere für Präparate, die zur Therapie des dargestellten Krankheitsbildes geeignet sind.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

CME-Fragebogen

CME-Fragebogen

Wer wird der Legende nach als Entdecker des grünen Tees bezeichnet?

Ye Tianshi

Sun Simiao

Zhang Zhongjing

Shennong

Li Shizhen

Wann findet sich der früheste schriftliche Beleg für das Trinken von Tee in China?

Xia-Dynastie (2070–1600 v.u.Z.)

Shang-Dynastie (1600–1046 v.u.Z.)

Han-Dynastie (206 v.u.Z.–220)

Wu-Dynastie (222–277)

Östliche Jin-Dynastie (317–419)

Welche Aussage zu grünem Tee ist richtig?

Es ist ein nicht fermentierter Tee.

Es ist kurz fermentierter Tee.

Es ist teilfermentierter Tee.

Es ist lang fermentierter Tee.

Es ist extrem lang fermentierter Tee.

In China wird Tee je nach Fermentationsgrad in sechs große Teelinien eingeteilt. Welcher Tee gehört NICHT dazu?

weißer Tee

schwarzer Tee

gelber Tee

roter Tee

brauner Tee

Wie werden Temperaturverhalten und Geschmack im Paradigma des grünen Tees eingeordnet?

neutral bis Tendenz warm + scharf + bitter

kühl + scharf + salzig

kühl bis Tendenz kalt + bitter + süß

kalt + salzig

sehr kalt + bitter + süß

Welcher Orbisbezug ist im Paradigma des grünen Tees NICHT direkt beschrieben?

o. cardialis (Fk „Herz“, xin)

o. pericardialis (Fk „Herzbeutel“, xinbao)

o. renalis (Fk „Niere“, shen)

o. stomachi (Fk „Magen“, wei)

o. pulmonalis (Fk „Lunge“, fei)

Welcher Inhaltsstoff des grünen Tees hat nach aktuellem Stand der Wissenschaft die größte klinische Bedeutung?

Theophyllin‑/Theobromin-Alkaloid (TA)

Asparaginsäure-6-Arginat (A6A)

Teegallat (TG)

p‑Cumaressigsäure (PCA)

Epigallocatechingallat/Epigallocatechin-3-gallat (EGCG)

Welche antidiabetische Wirkung von grünem Tee ist NICHT richtig?

Die Absorption von Glukose wird durch die Adipozyten reduziert.

Die Insulinsensivität wird verbessert.

Der Nüchternblutzuckerspiegel wird gesenkt.

Die Insulinsekretion wird gefördert.

Die Wundheilung wird verbessert.

Welche antikanzeröse Wirkung auf Tumorzellen hat grüner Tee NICHT?

Hemmung der Karzinogenese

Hemmung der Angiogenese

Hemmung der Proliferation

Hemmung der Apoptose

Hemmung der Invasion

Wann sollten grüner Tee oder Catechine in Form von Nahrungsergänzungsmittel NICHT eingenommen werden?

ab einem Alter von 65 Jahren

bei Diabetes mellitus Typ 2

bei Herz-Kreislauf-Erkrankungen

bei einer bekannten chronisch obstruktiven Lungenerkrankung (COPD)

bei der Chemotherapie mit dem Wirkstoff Bortezomib

Dieser CME-Kurs wurde von der Bayerischen Landesärztekammer mit 6 Punkten in der Kategorie I (tutoriell unterstützte Online-Maßnahme) zur zertifizierten Fortbildung freigegeben.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staab, L. Grüner Tee – Daten und Studien zur chinesischen und westlichen Wirkung. Chin Med 39, 3–23 (2024). https://doi.org/10.1007/s00052-024-00110-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00052-024-00110-1

Schlüsselwörter

Keywords

Navigation