Skip to main content

Advertisement

Log in

Epigallocatechin-3-gallate regulates the expression of Kruppel-like factor 4 through myocyte enhancer factor 2A

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Epigallocatechin-3-gallate (EGCG), a powerful antioxidant and free ion scavenger found in green tea, exhibits inhibitory effects on different stages of tumorigenesis. Within gastric cancer cells, the transcription factor Kruppel-like factor 4 (KLF4) is downregulated, and it is possible that EGCG exerts its anti-tumorigenic function through modulation of KLF4 expression. In order to examine the effects of EGCG on KLF4 in a gastric tumor model, we treated the gastric cancer cell line NCI-N87 with EGCG. We found that EGCG treatment results in increased expression of KLF4 and alters expression of the KLF4 target genes p21, CDK4, and cyclin D1. EGCG inhibits the growth of NCI-N87 cells in a time- and dose-dependent manner through arresting the cell cycle in the G0/G1 phase. Furthermore, terminal deoxynucleotidyl transferase dUTP nick end labeling assay and 4′,6-diamidino-2-phenylindole staining revealed that EGCG is able to promote apoptosis of NCI-N87 cells. The suppressive effects of EGCG on cell growth and cell cycle protein expression are eliminated by decreasing KLF4 mRNA using siRNA and are magnified by overexpressing KLF4. Using KLF4 reporter constructs, we verified that the elevated expression induced by EGCG was mediated by increasing levels of activated MEF2A, which bound to the promoter region of KLF4. Taken together, this is the first time that EGCG is reported to increase the expression of KLF4, suggesting a novel mechanisms in gastric cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Calalb MB, McKinsey TA, Newkirk S, Huynh K, Sucharov CC, Bristow MR (2009) Increased phosphorylation-dependent nuclear export of class II histone deacetylases in failing human heart. Clin Transl Sci 2(5):325–332

    Article  CAS  PubMed  Google Scholar 

  • Chen ZY, Shie J, Tseng C (2000) Up-regulation of gut-enriched 396 Krüppel-like factor by interferon-gamma in human colon carcinoma cells. FEBS Lett 477:67–72

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Whitney EM, Gao SY, Yang VW (2003) Transcriptional profiling of Kruppel-like factor 4 reveals a function in cell cycle regulation and epithelial differentiation. J Mol Biol 326:665–677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen D, Wan SB, Yang H, Yuan J, Chan TH, Dou QP (2011) EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv Clin Chem 53:155–177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiambaretta F, De Graeve F, Turet G, Marceau G, Gain P, Dastugue B, Rigal D, Sapin V (2004) Cell and tissue specific expression of human Kruppel-like transcription factors in human ocular surface. Mol Vis 10:901–909

    CAS  PubMed  Google Scholar 

  • Cho YG, Song JH, Kim CJ, Nam SW, Yoo NJ, Lee JY, Park WS (2007) Genetic and epigenetic analysis of the KLF4 gene in gastric cancer. APMIS 115:802–808

    Article  CAS  PubMed  Google Scholar 

  • Cox DM, Du M, Marback M, Yang EC, Chan J, Siu KW et al (2003) Phosphorylation motifs regulating the stability and function of myocyte enhancer factor 2A. J Biol Chem 278:15297–15303

    Article  CAS  PubMed  Google Scholar 

  • de Angelis L, Zhao J, Andreucci JJ, Olson EN, Cossu G, McDermott JC (2005) Regulation of vertebrate myotome development by the p38 MAP kinase-MEF2 signaling pathway. Dev Biol 283:171–179

    Article  PubMed  Google Scholar 

  • Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, de Vries CJ, Biessen EA, van Berkel TJ, Pannekoek H, Horrevoets AJ (2005) Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 167:609–618

    Article  CAS  PubMed  Google Scholar 

  • Evans PM, Liu C (2008) Roles of Krüpel-like factor 4 in normal homeostasis, cancer and stem cells. Acta Biochim Biophys Sin (Shanghai) 40:554–564

    Article  CAS  Google Scholar 

  • Feinberg MW, Wara AK, Cao Z et al (2007) The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO J 26:4138–4148

    Article  CAS  PubMed  Google Scholar 

  • Golden EB, Lam PY, Kardosh A, Gaffney KJ, Cadenas E, Louie SG, Petasis NA, Chen T, Schönthal AH (2009) Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood 113:5927–5937

    Article  CAS  PubMed  Google Scholar 

  • Gracia-Sancho J, Villarreal G Jr, Zhang Y, Garcia-Cardena G (2010) Activation of Sirt1 by resveratrol induces Klf2 expression conferring an endothelial vasoprotective phenotype. Cardiovasc Res 85:514–519

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zhou H, Tang H, Luo Y (2006) Deficiency of disulfide bonds facilitating fibrillogenesis of endostatin. J Biol Chem 414:1048–1057

    Article  Google Scholar 

  • Heidenreich KA, Linseman DA (2004) Myocyte enhancer factor-2 transcription factors in neuronal differentiation and survival. Mol Neurobiol 29:155–166

    Article  CAS  PubMed  Google Scholar 

  • Kanai M, Wei D, Li Q, Jia Z, Ajani J, Le X, Yao J, Xie K (2006) Loss of Kruppel-like factor 4 expression contributes to Sp1 overexpression and human gastric cancer development and progression. Clin Cancer Res 12:6395–6402

    Article  CAS  PubMed  Google Scholar 

  • Klaewsongkram J, Yang Y, Golech S, Katz J, Kaestner KH, Weng NP (2007) Kruppel-like factor 4 regulates B cell number and activation-induced B cell proliferation. J Immunol 179:4679–4684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurahashi N, Sasazuki S, Iwasaki M, Inoue M, Tsugane S, JPHC Study Group (2008) Green tea consumption and prostate cancer risk in Japanese men: a prospective study. Am J Epidemiol 167:71–77

    Article  PubMed  Google Scholar 

  • Li IC, Chan CT, Lu YF et al (2011) Zebrafish Kruppel-like factor 4a represses intestinal cell proliferation and promotes differentiation of intestinal cell lineages. PLoS One 6:e20974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manohar M, Fatima I, Saxena R, Chandra V, Sankhwar PL, Dwivedi A (2013) (−)-Epigallocatechin-3-gallate induces apoptosis in human endometrial adenocarcinoma cells via ROS generation and p38 MAP kinase activation. J Nutr Biochem 24:940–947

    Article  CAS  PubMed  Google Scholar 

  • McConnell BB, Yang VW (2010) Mammalian Kruppel-like factors in health and diseases. Physiol Rev 90:1337–1381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McConnell BB, Ghaleb AM, Nandan MO, Yang VW (2007) The diverse functions of Krüppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays 29:549–557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rowland BD, Peeper DS (2006) KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6:11–23

    Article  CAS  PubMed  Google Scholar 

  • Sheng B, Wang X, Su B, Lee HG, Casadesus G, Perry G, Zhu X (2012) Impaired mitochondrial biogenesis contributes to mitchondrial dysfunction in Alzheimer's disease. J Neurochem 120:419–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shie JL, Pestell RG, TC C (1999) Repression of the cyclin D1 promoter by gut-enriched Kruppel-like factor. Gastroenterology 11:A520

    Google Scholar 

  • Shie JL, Chen ZY, Fu M, Pestell RG, Tseng CC (2000) Gut-enriched Krüppel-like factor represses cyclin D1 promoter activity through Sp1 motif. Nucleic Acids Res 28:2969–2976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villarreal G Jr, Zhang Y, Larman HB, Gracia-Sancho J, Koo A, García-Cardeña G (2010) Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Chem Biophys Res Commun 391:984–989

    Article  CAS  Google Scholar 

  • Wei D, Gong W, Kanai M, Schlunk C, Wang L, Yao JC, Wu TT, Huang S, Xie K (2005) Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res 65:2746–2754

    Article  CAS  PubMed  Google Scholar 

  • Yang CS (1997) Inhibition of carcinogenesis by tea. Nature 389:134–135

    Article  CAS  PubMed  Google Scholar 

  • Yoon HS, Yang VW (2004) Requirement of Kruppel-like factor 4 in preventing entry into mitosis following DNA damage. J Biol Chem 279:5035–5041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon HS, Ghaleb AM, Nandan MO, Hisamuddin IM, Dalton WB, Yang VW (2005) Kruppel-like factor 4 prevents centrosome amplification following gamma-irradiation-induced DNA damage. Oncogene 24:4017–4025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang G, Miura Y, Yagasaki K (2000a) Suppression of adhesion and invasion of hepatoma cells in culture by tea compounds through antioxidative activity. Cancer Lett 159:169–173

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Geiman DE, Shields JM, Dang DT, Mahatan CS, Kaestner KH, Biggs JR, Kraft AS, Yang VW (2000b) The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J Biol Chem 275:18391–18398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang N, Zhang J, Wang ZW, Zha L, Huang Z (2012) Altered expression of Krüppel-like factor 4 and β-catenin in human gastric cancer. Oncol Lett 3:1017–1022

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peirong Zhang.

Additional information

Yuwen Ma and Youkui Shi are the co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Shi, Y., Li, W. et al. Epigallocatechin-3-gallate regulates the expression of Kruppel-like factor 4 through myocyte enhancer factor 2A. Cell Stress and Chaperones 19, 217–226 (2014). https://doi.org/10.1007/s12192-013-0447-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-013-0447-6

Keywords

Navigation