Skip to main content

Advertisement

Log in

The metabolic fate of izencitinib, a gut-selective pan-JAK inhibitor, in humans. Identification of unusual fecal metabolites and implications for MIST evaluation

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Izencitinib is a novel, orally administered pan-JAK inhibitor designed as a gut-selective therapy that was under development for the treatment of inflammatory bowel disease. The objectives of this study were to define the mass balance, routes and rates of excretion, and metabolic fate of izencitinib after oral administration of [14C]-izencitinib in humans. Six healthy adult male subjects were administered a single 100 mg (~300 μCi) oral dose of [14C]-izencitinib. Fecal excretion was the dominant route of elimination with >90% of the administered dose recovered in the feces. As expected by design, plasma concentrations of total radioactivity and izencitinib were low with the mean terminal half-life of total radioactivity (138 h) exceeding that of izencitinib (32.4 h). Izencitinib represented approximately 17% of the total circulating radioactivity, suggesting the presence of multiple circulating plasma metabolites. However, no individual metabolite exceeded 10% of total drug-related material in plasma. The major metabolites in feces, M18 and M9, were found to have unusual structures that reflected the presence of a nucleophilic carbon center in the naphthyridine ring of izencitinib. Proposed mechanisms for the formation of these metabolites involved oxidation and rearrangement (M18) and a one-carbon addition, potentially occurring through reaction with endogenous formaldehyde. Given the gut-selective properties of izencitinib, it is proposed that these novel fecal metabolites are the most relevant for evaluating the impact of metabolism on the pharmacological and toxicological properties of izencitinib, and that the circulating plasma metabolite profile is of little consequence in the assessment of the safety characteristics of izencitinib metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADME:

absorption, distribution, metabolism, and excretion

AMS:

accelerator mass spectrometry

AUC:

area under the curve

AUC0-96h :

area under the curve from time zero to 96 hours

AUC0-t :

area under the curve from time zero to the last measured concentration

CID:

collision induced dissociation

Cmax :

maximum concentration

CD:

Crohn’s disease

FTIH:

first-time-in human

GFP-STAT1:

green fluorescent protein-signal transducer and activator of transcription

GI:

gastrointestinal

h:

hour or hours

HLM:

human liver microsomes

HPLC:

high-performance liquid chromatography

HPLC-UV/MS:

HPLC coupled with mass spectrometry and ultraviolet detection

HRMS:

high resolution mass spectra

IBD:

inflammatory bowel disease

IC50 :

half maximal inhibitory concentration

JAK:

Janus kinase

Ki:

dissociation constant

LC-MS/MS:

HPLC with tandem mass spectrometry LC-UV/AMS

MHRA:

Medicines and Healthcare products Regulatory Agency

MIST:

metabolites in safety testing

MS3 :

third generation product ions mass spectrometry

ND:

not detected

1H NMR:

nuclear magnetic resonance

PDA:

photodiode array

pIC50 :

negative log of IC50

pKi:

negative log of Ki

PK:

pharmacokinetics

RP:

reverse phase

t1/2 :

half life

Tmax :

time of maximum concentration

S.D.:

standard deviation

SEM:

standard error of the mean

UC:

ulcerative colitis

UV:

ultraviolet

References

  1. Sobczak M, Fabisiak A, Murawska N, Wesolowska E, Wierzbicka P, Wlazlowski M, et al. Current overview of extrinsic and intrinsic factors in etiology and progression of inflammatory bowel diseases. Pharm Rep. 2014;66:766–75. https://doi.org/10.1016/j.pharep.2014.04.005

    Article  CAS  Google Scholar 

  2. Segal JP, LeBlanc JF, Hart AL. Ulcerative colitis: an update. Clin Med (Lond). 2021;21:135–9. https://doi.org/10.7861/clinmed.2021-0080

    Article  PubMed  Google Scholar 

  3. Du L, Ha C. Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterol Clin North Am. 2020;49:643–54. https://doi.org/10.1016/j.gtc.2020.07.005

    Article  PubMed  Google Scholar 

  4. Petagna L, Antonelli A, Ganini C, Bellato V, Campanelli M, Divizia A, et al. Pathophysiology of Crohn’s disease inflammation and recurrence. Biol Direct. 2020;15:23. https://doi.org/10.1186/s13062-020-00280-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Al-Bawardy B, Shivashankar R, Proctor DD. Novel and emerging therapies for inflammatory bowel disease. Front Pharm. 2021;12:651415. https://doi.org/10.3389/fphar.2021.651415

    Article  CAS  Google Scholar 

  6. Santiago M, Stocker F, Ministro P, Goncalves R, Carvalho D, Portela F, et al. Incidence trends of inflammatory bowel disease in a Southern European Country: a mirror of the western world. Clin Transl Gastroenterol. 2022;13:e00481. https://doi.org/10.14309/ctg.0000000000000481

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boland BS, Sandborn WJ, Chang JT. Update on Janus kinase antagonists in inflammatory bowel disease. Gastroenterol Clin North Am. 2014;43:603–17. https://doi.org/10.1016/j.gtc.2014.05.011

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dudek P, Fabisiak A, Zatorski H, Malecka-Wojciesko E, Talar-Wojnarowska R. Efficacy, safety and future perspectives of JAK inhibitors in the IBD treatment. J Clin Med. 2021;10. https://doi.org/10.3390/jcm10235660

  9. Harris C, Cummings JRF. JAK1 inhibition and inflammatory bowel disease. Rheumatology. 2021;60:ii45–ii51. https://doi.org/10.1093/rheumatology/keaa896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cordes F, Foell D, Ding JN, Varga G, Bettenworth D. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn’s disease. World J Gastroenterol. 2020;26:4055–75. https://doi.org/10.3748/wjg.v26.i28.4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meyer DM, Jesson MI, Li X, Elrick MM, Funckes-Shippy CL, Warner JD, et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflamm. 2010;7:41. https://doi.org/10.1186/1476-9255-7-41

    Article  CAS  Google Scholar 

  12. Parmentier JM, Voss J, Graff C, Schwartz A, Argiriadi M, Friedman M. et al. In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494). BMC Rheumatol. 2018;2:23. https://doi.org/10.1186/s41927-018-0031-x

    Article  PubMed  PubMed Central  Google Scholar 

  13. FDA. Xeljanz Prescribing Information. 2018. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/203214s018lbl.pdf

  14. EMA. Xeljanz Summary of Product Characteristics. 2018. https://www.ema.europa.eu/en/documents/product-information/xeljanz-epar-product-information_en.pdf

  15. FDA. Rinvoq Prescribing Information. 2022. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/211675s007lbl.pdf

  16. EMA. Rinvoq Summary of Product Characteristics. 2022. https://www.ema.europa.eu/en/documents/product-information/rinvoq-epar-product-information_en.pdf

  17. MHRA. Rinvoq Summary of Product Characteristics. 2023. https://www.medicines.org.uk/emc/product/10972/smpc/print

  18. Agrawal M, Kim ES, Colombel JF. JAK inhibitors safety in ulcerative colitis: practical implications. J Crohns Colitis. 2020;14:S755–S60. https://doi.org/10.1093/ecco-jcc/jjaa017

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sandborn WJ, Su C, Sands BE, D’Haens GR, Vermeire S, Schreiber S, et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2017;376:1723–36. https://doi.org/10.1056/NEJMoa1606910

    Article  CAS  PubMed  Google Scholar 

  20. Sandborn WJ, Panes J, Sands BE, Reinisch W, Su C, Lawendy N, et al. Venous thromboembolic events in the tofacitinib ulcerative colitis clinical development programme. Aliment Pharm Ther. 2019;50:1068–76. https://doi.org/10.1111/apt.15514

    Article  CAS  Google Scholar 

  21. Sandborn WJ, Feagan BG, Loftus EV Jr., Peyrin-Biroulet L, Van Assche G, D’Haens G, et al. Efficacy and safety of upadacitinib in a randomized trial of patients with crohn’s disease. Gastroenterology. 2020;158:2123–38.e8. https://doi.org/10.1053/j.gastro.2020.01.047

    Article  CAS  PubMed  Google Scholar 

  22. Sandborn WJ, Ghosh S, Panes J, Schreiber S, D’Haens G, Tanida S, et al. Efficacy of upadacitinib in a randomized trial of patients with active ulcerative colitis. Gastroenterology. 2020;158:2139–49.e14. https://doi.org/10.1053/j.gastro.2020.02.030

    Article  CAS  PubMed  Google Scholar 

  23. Wyant T, Fedyk E, Abhyankar B. An overview of the mechanism of action of the monoclonal antibody vedolizumab. J Crohns Colitis. 2016;10:1437–44. https://doi.org/10.1093/ecco-jcc/jjw092

    Article  PubMed  Google Scholar 

  24. Colombel JF, Sands BE, Rutgeerts P, Sandborn W, Danese S, D’Haens G, et al. The safety of vedolizumab for ulcerative colitis and Crohn’s disease. Gut. 2017;66:839–51. https://doi.org/10.1136/gutjnl-2015-311079

    Article  CAS  PubMed  Google Scholar 

  25. Lukin D, Faleck D, Xu R, Zhang Y, Weiss A, Aniwan S, et al. Comparative safety and effectiveness of vedolizumab to tumor necrosis factor antagonist therapy for ulcerative colitis. Clin Gastroenterol Hepatol. 2022;20:126–35. https://doi.org/10.1016/j.cgh.2020.10.003

    Article  CAS  PubMed  Google Scholar 

  26. Loftus EV Jr., Colombel JF, Feagan BG, Vermeire S, Sandborn WJ, Sands BE, et al. Long-term efficacy of vedolizumab for ulcerative colitis. J Crohns Colitis. 2017;11:400–11. https://doi.org/10.1093/ecco-jcc/jjw177

    Article  PubMed  Google Scholar 

  27. Loftus EV Jr., Feagan BG, Panaccione R, Colombel JF, Sandborn WJ, Sands BE, et al. Long-term safety of vedolizumab for inflammatory bowel disease. Aliment Pharm Ther. 2020;52:1353–65. https://doi.org/10.1111/apt.16060

    Article  CAS  Google Scholar 

  28. Vermeire S, Loftus EV Jr., Colombel JF, Feagan BG, Sandborn WJ, Sands BE, et al. Long-term efficacy of vedolizumab for crohn’s disease. J Crohns Colitis. 2017;11:412–24. https://doi.org/10.1093/ecco-jcc/jjw176

    Article  PubMed  Google Scholar 

  29. Beattie DT, Pulido-Rios MT, Shen F, Ho M, Situ E, Tsuruda PR, et al. Intestinally-restricted Janus Kinase inhibition: a potential approach to maximize the therapeutic index in inflammatory bowel disease therapy. J Inflamm. 2017;14:28. https://doi.org/10.1186/s12950-017-0175-2

    Article  CAS  Google Scholar 

  30. Sandborn WJ, Nguyen DD, Beattie DT, Brassil P, Krey W, Woo J, et al. Development of Gut-Selective Pan-Janus Kinase Inhibitor TD-1473 for ulcerative colitis: a translational medicine programme. J Crohns Colitis. 2020;14:1202–13. https://doi.org/10.1093/ecco-jcc/jjaa049

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hardwick RN, Brassil P, Badagnani I, Perkins K, Obedencio GP, Kim AS, et al. Gut-Selective Design of Orally Administered Izencitinib (TD-1473) Limits Systemic Exposure and Effects of Janus Kinase Inhibition in Nonclinical Species. Toxicol Sci. 2022;186:323–37. https://doi.org/10.1093/toxsci/kfac002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Penner N, Xu L, Prakash C. Radiolabeled absorption, distribution, metabolism, and excretion studies in drug development: why, when, and how. Chem Res Toxicol. 2012;25:513–31. https://doi.org/10.1021/tx300050f

    Article  CAS  PubMed  Google Scholar 

  33. Spracklin DK, Chen D, Bergman AJ, Callegari E, Obach RS. Mini-review: comprehensive drug disposition knowledge generated in the modern human radiolabeled ADME study. CPT Pharmacomet Syst Pharm. 2020;9:428–34. https://doi.org/10.1002/psp4.12540

    Article  CAS  Google Scholar 

  34. Young GC, Spracklin DK, James AD, Hvenegaard MG, Scarfe G, Wagner DS et al. Considerations for human ADME strategy and design paradigm Shift(s) - an industry white paper. Clin Pharmacol Ther. 2022. https://doi.org/10.1002/cpt.2691

  35. FDA. Clinical Pharmacology Considerations for Human Radiolabeled Mass Balance Studies (Draft). 2022. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-pharmacology-considerations-human-radiolabeled-mass-balance-studies

  36. FDA. Safety Testing of Drug Metabolites Guidance for Industry. 2020 https://www.fda.gov/media/72279/download

  37. ICH. ICH M3(R2) Guidance for industry: nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. 2010. https://www.fda.gov/media/71542/download

  38. ICH. ICH Guideline M12 on drug interaction studies (Step 2b, Draft). 2022. https://www.ema.europa.eu/en/documents/scientific-guideline/draft-ich-guideline-m12-drug-interaction-studies-step-2b_en.pdf

  39. Bourdet DL, Yeola S, Hegde SS, Colson PJ, Barnes CN, Borin MT. Revefenacin absorption, metabolism, and excretion in healthy subjects and pharmacological activity of its major metabolite. Drug Metab Dispos. 2020;48:1312–20. https://doi.org/10.1124/dmd.120.000103

    Article  CAS  PubMed  Google Scholar 

  40. Hamilton RA, Garnett WR, Kline BJ. Determination of mean valproic acid serum level by assay of a single pooled sample. Clin Pharm Ther. 1981;29:408–13. https://doi.org/10.1038/clpt.1981.56

    Article  CAS  Google Scholar 

  41. Penner N, Klunk LJ, Prakash C. Human radiolabeled mass balance studies: objectives, utilities and limitations. Biopharm Drug Dispos. 2009;30:185–203. https://doi.org/10.1002/bdd.661

    Article  CAS  PubMed  Google Scholar 

  42. Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22:3099–108. https://doi.org/10.1016/0006-2952(73)90196-2

    Article  CAS  PubMed  Google Scholar 

  43. Martin S, Lenz EM, Temesi D, Wild M, Clench MR. Reaction of homopiperazine with endogenous formaldehyde: a carbon hydrogen addition metabolite/product identified in rat urine and blood. Drug Metab Dispos. 2012;40:1478–86. https://doi.org/10.1124/dmd.112.044917

    Article  CAS  PubMed  Google Scholar 

  44. Zhang M, Resuello CM, Guo J, Powell ME, Elmore CS, Hu J, et al. Contribution of artifacts to N-methylated piperazine cyanide adduct formation in vitro from N-alkyl piperazine analogs. Drug Metab Dispos. 2013;41:1023–34. https://doi.org/10.1124/dmd.112.050450

    Article  CAS  PubMed  Google Scholar 

  45. Wei Y, Wang M, Liu H, Niu Y, Wang S, Zhang F, et al. Simultaneous determination of seven endogenous aldehydes in human blood by headspace gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2019;1118-1119:85–92. https://doi.org/10.1016/j.jchromb.2019.04.027

    Article  CAS  Google Scholar 

  46. Luo W, Li H, Zhang Y, Ang CY. Determination of formaldehyde in blood plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl. 2001;753:253–7. https://doi.org/10.1016/s0378-4347(00)00552-1

    Article  CAS  PubMed  Google Scholar 

  47. European Food Safety Authority, 2014. Endogenous formaldehyde turnover in humans compared with exogenous contribution from food sources. EFSA J. 2014;12:3550. https://doi.org/10.2903/j.efsa.2014.3550

    Article  CAS  Google Scholar 

  48. Peppercorn MA. Sulfasalazine. pharmacology, clinical use, toxicity, and related new drug development. Ann Intern Med. 1984;101:377–86. https://doi.org/10.7326/0003-4819-101-3-377

    Article  CAS  PubMed  Google Scholar 

  49. Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 2017;179:204–22. https://doi.org/10.1016/j.trsl.2016.08.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors and Theravance Biopharma thank the subjects for their participation in the clinical trial, and the principal investigator and clinical site staff at Celerion, Inc. in Lincoln, Nebraska. The study was funded by Theravance Biopharma Ireland Limited.

Author information

Authors and Affiliations

Authors

Contributions

IB, GPO, MR, and DLB are employees of Theravance Biopharma US, Inc., and shareholders in Theravance Biopharma, Inc. MTB, WLF, TAB are paid consultants for Theravance Biopharma US, Inc. SY, NLS, and XH are former employees of Theravance Biopharma US, Inc., and may hold shares in Theravance Biopharma, Inc.

Corresponding author

Correspondence to David L. Bourdet.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeola, S., Badagnani, I., Huang, X. et al. The metabolic fate of izencitinib, a gut-selective pan-JAK inhibitor, in humans. Identification of unusual fecal metabolites and implications for MIST evaluation. Med Chem Res 32, 2071–2088 (2023). https://doi.org/10.1007/s00044-023-03143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03143-6

Keywords

Navigation