Skip to main content

Advertisement

Log in

Discovery of novel, selective, functionalized 5-(2-(5-arylhexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)ethyl)-γ-butyrolactone sigma-2 ligands

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The sigma-2 (σ2) receptor was recently identified as the Transmembrane Protein 97 (TMEM97, also known as MAC30 (Meningioma-associated protein)). This protein has been linked to diseases and conditions such as Niemann-Pick disease, schizophrenia, neuropathic pain, traumatic brain injury, cancer, drug addiction, and Alzheimer’s disease. The therapeutic utility of σ2 ligands is under investigation in numerous laboratories and on-going clinical trials. Herein, we report the identification of a series of novel 5-(2-(5-arylhexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)ethyl)-γ-butyrolactone and their evaluation using in vitro σ2 and sigma-1 (σ1) assays to determine their σ12 selectivity profiles, as well as a series of in vitro ADME assays.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Fig. 3

Similar content being viewed by others

References

  1. Martin WR, Eades CE, Thompson JA, Huppler RE. The effects of morphine and nalorphine-like drugs in the non-dependent and morphine-dependent chronic spinal dog. J Pharm Exp Ther. 1976;197:517–32.

    CAS  Google Scholar 

  2. Su TP. Evidence for sigma opioid receptor: binding of [3H]SKF-10047 to etorphine inaccessible sites in guinea-pig brain. J Pharmacol Exp Ther. 1982;223:284–90. https://doi.org/10.1007/s00044-020-02574-9

    Article  CAS  PubMed  Google Scholar 

  3. Khazan N, Young GA, El-Fakany EE, Hong O, Caliigaro D. Sigma receptors mediated the psychotomimetic effects of N-allylnormetazocine (SKF-10,047), but not its opioid agonistic-antagonistic properties. Neuropharmacology. 1984;23:983–7. https://doi.org/10.1016/0028-3908(84)90015-7

    Article  CAS  PubMed  Google Scholar 

  4. Bowen WD, de Costa BR, Hellewell SB, Walker JM, Rice KC. [3H]-(+)-Pentazocine: a potent and highly selective benzomorphan-based probe for sigma-1 receptors. Mol Neuropharmacol. 1993;3:117–26.

    CAS  Google Scholar 

  5. Schmidt HR, Zheng S, Guripinar E, Koehl A, Manglik A, Kruse AC. Crystal structure of the human σ1 receptor. Nature 2016;532:527–30. https://doi.org/10.1038/nature17391. 28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alon A, Lyu J, Braz JM, Tummino TA, Craik V, O’Meara MJ, et al. Structures of the σ2 receptor enable docking for bioactive ligand discovery. Nature. 2021;600:759–64. https://doi.org/10.1038/s41586-021-04175-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alon A, Schmidt HR, Wood MD, Sahn JJ, Martin SF, Krusea AC. Identification of the gene that codes for the σ2. receptor, Proc Natl Acad Sci USA 2017;114:7160–5. https://doi.org/10.1073/pnas.1705154114

    Article  CAS  PubMed  Google Scholar 

  8. Bartz F, Kern L, Erz D, Zhu M, Gilbert D, Meinhof T, et al. Identification of cholesterol-regulating genes by targeted RNAi screening. Cell Metab. 2009;10:63–75. https://doi.org/10.1016/j.cmet.2009.05.009

    Article  CAS  PubMed  Google Scholar 

  9. Ebrahimi-Fakhar D, Wahlster L, Bartz F, Werenbeck-Ueding J, Praggastis M, Zhang J, et al. Reduction of TMEM97 increases NPC1 protein levels and restores cholesterol trafficking in Niemann-pick type C1 disease cells. Hum Mol Genet. 2016;25:3588–99. https://doi.org/10.1093/hmg/ddw204. 15

    Article  CAS  Google Scholar 

  10. Guo L, Zhen X. Sigma-2 receptor ligands: neurobiological effects. Curr Med Chem 2015;22:989–1003. https://doi.org/10.2174/0929867322666150114163607

    Article  CAS  PubMed  Google Scholar 

  11. Intagliata S, Sharma A, King TI, Mesangeau C, Seminerio M, Chin FT, et al. Discovery of a highly selective sigma-2 receptor ligand, 1-(4-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one (CM398), with drug-like properties and antinociceptive effects in vivo. AAPS J. 2020;22:94 https://doi.org/10.1208/s12248-020-00472-x

    Article  CAS  PubMed  Google Scholar 

  12. Sahn JJ, Mejia GL, Ray PR, Martin SF, Price TJ. Sigma 2 receptor/Tmem97 agonists produce long lasting antineuropathic pain effects in mice. ACS Chem Neurosci. 2017;8:1801–11. https://doi.org/10.1021/acschemneuro.7b00200

    Article  CAS  PubMed  Google Scholar 

  13. Vazquez-Rosa E, Watson MR, Sahn JJ, Hodges TR, Schroeder RE, Cintron-Perez CJ, et al. Neuroprotective efficacy of a sigma 2 receptor/TMEM97 modulator (DKR-1677) after traumatic brain injury. ACS Chem Neurosci. 2019;10:1595–602. https://doi.org/10.1021/acschemneuro.8b00543

    Article  CAS  PubMed  Google Scholar 

  14. Abatematteo FS, Niso M, Lacivita E, Abate C. σ2 Receptor and its role in cancer with focus on a multitarget directed ligand (MTDL) approach. Molecules 2021;26:3743 https://doi.org/10.3390/molecules26123743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Asong G, Zhu XY, Bricker B, Andey T, Amissah F, Lamango N, et al. New analogs of SYA013 as sigma-2 ligands with anticancer activity. Bioorg Med Chem. 2019;27:2629–36. https://doi.org/10.1016/j.bmc.2019.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Intagliata S, Alsharif WF, Mesangeau C, Fazio N, Seminerio M, Xu YT, et al. Benzimidazolone-based selective σ2 receptor ligands: Synthesis and pharmacological evaluation. Eur J Med Chem. 2019;165:250–7. https://doi.org/10.1016/j.ejmech.2019.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yi B, Sahn JJ, Ardestani PM, Evans AK, Scott LL, Chan JZ, et al. Small molecule modulator of sigma 2 receptor is neuroprotective and reduces cognitive deficits and neuroinflammation in experimental models of Alzheimer’s disease. J Neurochem. 2017;140:561–75. https://doi.org/10.1111/jnc.13917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Izzo NJ, Staniszewski A, To L, Fa M, Teich AF, Saeed F, et al. Alzheimer’s therapeutics targeting amyloid beta 1−42 oligomers I: Abeta 42 oligomer binding to specific neuronal receptors is displaced by drug candidates that improve cognitive deficits. PLoS One. 2014;9:e111898 https://doi.org/10.1371/journal.pone.0111898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rishton GM, Look GC, Ni ZJ, Zhang J, Wang Y, Huang Y, et al. Discovery of investigational drug CT1812, an antagonist of the sigma-2 receptor complex for Alzheimer’s disease. ACS Med Chem Lett 2021;12:1389–95. https://doi.org/10.1021/acsmedchemlett.1c00048

    Article  CAS  PubMed  Google Scholar 

  20. https://clinicaltrials.gov/ct2/show/NCT04735536?term=CT1812&draw=2&rank=1

  21. McDonald ES, Doot RK, Young AJ, Schubert EK, Tchou J, Pryma DA, et al. Breast cancer 18F-ISO-1 uptake as a marker of proliferation status. J Nucl Med. 2020;61:665–70. https://doi.org/10.2967/jnumed.119.232363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sahn JJ, Mejia GL, Ray PR, Martin SF, Price TJ. Sigma 2 receptor/Tmem97 agonists produce long lasting antineuropathic pain effects in mice. ACS Chem Neurosci. 2017;8:1801–11. https://doi.org/10.1021/acschemneuro.7b00200

    Article  CAS  PubMed  Google Scholar 

  23. Guo L, Zhen X. Sigma-2 receptor ligands: neurobiological effects. Curr Med Chem 2015;22:989–1003. https://doi.org/10.2174/0929867322666150114163607

    Article  CAS  PubMed  Google Scholar 

  24. Blass BE, Gao R, Blattner KM, Gordon JC, Pippin DA, Canney DC. Design, synthesis, and evaluation of novel, selective γ-butyrolactones sigma-2 ligands. Med Chem Res. 2021;30:1713–27. https://doi.org/10.1007/s00044-021-02771-0

    Article  CAS  Google Scholar 

  25. Blass BE. Basic principles of drug discovery and development second edition, Academic Press, 2021, chapter 5, 257–303, https://doi.org/10.1016/B978-0-12-817214-8.00005-1.

  26. Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005;2:541–53. https://doi.org/10.1602/neurorx.2.4.541

    Article  PubMed  PubMed Central  Google Scholar 

  27. Blass BE. Basic Principles of Drug Discovery and Development. 2nd edition. Academic Press; 2021, chapter 6, 305–69, https://doi.org/10.1016/B978-0-12-817214-8.00005-1.

  28. Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM, Huang XP, et al. Automated design of ligands to polypharmacological profiles. Nature. 2012;492:215–20. https://doi.org/10.1038/nature11691

    Article  CAS  PubMed  Google Scholar 

  29. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aid Mol Des 2013;7:221–34. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  Google Scholar 

  30. Schrödinger Release 2022-1: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2021; Impact, Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC, New York, NY, 2021.

  31. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, et al. A hierarchical approach to all-atom protein loop prediction. Proteins: Struct, Funct Bioinforma. 2004;55:351–67. https://doi.org/10.1002/prot.10613

    Article  CAS  Google Scholar 

  32. Jacobson MP, Friesner RA, Xiang Z, Honig B. On the role of crystal packing forces in determining protein sidechain conformations. J Mol Biol 2002;320:597–608. https://doi.org/10.1016/s0022-2836(02)00470-9

    Article  CAS  PubMed  Google Scholar 

  33. Schrödinger Release 2022-1: Prime, Schrödinger, LLC, New York, NY, 2021.

  34. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006;49:6177–96. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  35. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. J Med Chem 2004;47:1739–49. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  36. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. enrichment factors in database screening. J Med Chem 2004;47:1750–9. https://doi.org/10.1021/jm030644s

    Article  CAS  PubMed  Google Scholar 

  37. Schrödinger Release 2022-1: Glide, Schrödinger, LLC, New York, NY, 2021.

  38. Schrödinger Release 2022-1: LigPrep, Schrödinger, LLC, New York, NY, 2021.

  39. McMasters DR, Torres RA, Crathern SJ, Dooney D, Nachbar RB, Sheridan RP, et al. Inhibition of recombinant cytochrome P450 isoforms 2D6 and 2C9 by diverse drug-like molecules. J Med Chem. 2007;50:3205–13. https://doi.org/10.1021/jm0700060. 14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Ki determinations for compound binding to Sigma-1, and Sigma-2 were generously provided by the National Institute of Mental Health’s Psychoactive Drug Screening Program, Contract # HHSN-271-2013-00017-C (NIMH PDSP). The NIMH PDSP is directed by Bryan L. Roth at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscoll at NIMH, Bethesda MD, USA. For experimental details please refer to the PDSP web site https://pdsp.unc.edu/ims/investigator/web/. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. TPSA and cLogP values were generated using the Dotmatics software suite (Dotmatics LLC The Old Monastery, Windhill Bishops, Stortford Herts, CW23 2ND UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin E. Blass.

Ethics declarations

Conflict of interest

BEB and DJC both have equity interests in Praeventix LLC, which have been reviewed and approved by Temple University in accordance with its conflict of interest policies. Questions regarding this interest may be directed to the Temple University Conflict of Interest Program. No other author has reported conflicts of interest to disclose at the time of publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blass, B.E., Blattner, K.M., Gordon, J.C. et al. Discovery of novel, selective, functionalized 5-(2-(5-arylhexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)ethyl)-γ-butyrolactone sigma-2 ligands. Med Chem Res 31, 1209–1223 (2022). https://doi.org/10.1007/s00044-022-02909-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02909-8

Keywords

Navigation