Skip to main content

Advertisement

Log in

Synthesis of alamandine glycoside analogs as new drug candidates to antagonize the MrgD receptor for pain relief

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Two series of putatively brain-penetrant alamandine glycosides have been prepared for screening against the MrgD receptor. The first series retains the initial six residues of the alamandine sequence (ARVYIHP) as the “peptide message,” replacing the C-terminal proline (P) with several serine (S) glycosides at the C-terminus to produce “glycoside addresses”. In the second series, steric bulk was altered to modify the “peptide message”– the N-terminal alanine (A) residue was substituted with glycine (G); D-alanine (a); nor-valine (norV); D-nor-valine (D-norV); valine (V); and D-nor-valine (v), keeping the C-terminal serine-beta-D-glucoside (S-Glc) “glycoside address” constant. All the peptides and glycopeptides were synthesized as their C-terminal amides. The purity of native alamandine and its eleven selected derivatives were each confirmed using analytical HPLC. Also, the molecular weight and chemical composition were confirmed using mass spectroscopy. The MrgD receptor expression was evaluated in rationally chosen human cell lines, A549 and HEK 293. Both cell lines showed the presence of the MrgD receptor around 35 kDa, as confirmed by western blot analysis. The effect of varying concentrations of some alamandine derivatives on cell viability was evaluated on HEK 293 and A549 cell lines.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Munk VC, De Miguel LS, Petrimpol M, Butz N, Banfi A, Eriksson U, et al. Angiotensin II induces angiogenesis in the hypoxic adult mouse heart in vitro through an AT2-B2 receptor pathway. Hypertension. 2007;49:1178–85.

    Article  CAS  Google Scholar 

  2. Qaradakhi T, Apostolopoulos V, Zulli A. Angiotensin (1-7) and alamandine: similarities and differences. Pharmacol Res [Internet]. 2016;111:820–6. https://doi.org/10.1016/j.phrs.2016.07.025. Available from

    Article  CAS  Google Scholar 

  3. Filippo A, Federico M, Enrico C, Tommaso Z, Silvio FT, Zanier ER. Angiotensin-(1–7) as a potential therapeutic strategy for delayed cerebral ischemia in subarachnoid hemorrhage. Front Immunol. 2022;13. https://doi.org/10.3389/fimmu.2022.841692.

  4. Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG. Angiotensin receptors: Signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol—Heart Circulatory Physiol. 2001;281:50–6.

    Article  Google Scholar 

  5. Kopf PG, Campbell WB. Endothelial metabolism of angiotensin II to angiotensin III, not angiotensin (1-7), augmentsthe vasorelaxation response in adrenal cortical arteries. Endocrinology. 2013;154:4768–76.

    Article  CAS  Google Scholar 

  6. Domenig O, Manzel A, Grobe N, Königshausen E, Kaltenecker CC, Kovarik JJ, et al. Neprilysin is a mediator of alternative renin-angiotensin-system activation in the murine and human kidney. Sci Rep. 2016;6:1–11.

    Article  Google Scholar 

  7. Khajehpour S, Aghazadeh-Habashi A. Targeting the protective arm of the renin-angiotensin system: Focused on angiotensin-(1–7). J Pharmacol Exp Ther. 2021;377:64–74.

    Article  Google Scholar 

  8. Sakima A, Averill DB, Gallagher PE, Kasper SO, Tommasi EN, Ferrario CM, et al. Impaired Heart Rate Baroreflex in Older Rats: Role of Endogenous Angiotensin-(1–7) at the Nucleus Tractus Solitarii. Hypertension. 2005;46:333–340. https://doi.org/10.1161/01.HYP.0000178157.70142.33.

  9. Karnik SS, Singh KD, Tirupula K, Unal H. Significance of angiotensin 1–7 coupling with MAS1 receptor and other GPCRs to the renin-angiotensin system: IUPHAR Review 22. Br J Pharmacol. 2017;174:737–53.

    Article  CAS  Google Scholar 

  10. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/Angiotensin-(1-7)/Mas axis of the renin-angiotensin system: focus on angiotensin-(1-7). Physiol Rev. 2018;98:505–53.

    Article  CAS  Google Scholar 

  11. Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, et al. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res. 2013;112:1104–11.

    Article  CAS  Google Scholar 

  12. Etelvino GM, Peluso AAB, Santos RAS. New components of the renin-angiotensin system: alamandine and the Mas-related G protein-coupled receptor D. Curr Hypertens Rep. 2014;16:10–5.

    Article  Google Scholar 

  13. Forte BL, Slosky LM, Zhang H, Arnold MR, Staatz WD, Hay M, et al. Angiotensin-(1–7)/Mas receptor as an antinociceptive agent in cancer-induced bone pain. Pain. 2016;157:2709–2721.

  14. Hay M, Vanderah TW, Samareh-Jahani F, Constantopoulos E, Uprety AR, Barnes CA, et al. Cognitive impairment in heart failure: a protective role for angiotensin-(1-7). Behav Neurosci. 2017;131:99–114. Feb 1

    Article  CAS  Google Scholar 

  15. Hay M, Polt R, Heien ML, Vanderah TW, Largent-Milnes TM, Rodgers K, et al. A novel angiotensin-(1-7) glycosylated MAs receptor agonist for treating vascular cognitive impairment and inflammation-related memory dysfunction. J Pharmacol Exp Ther. 2019;369:9–25.

    Article  CAS  Google Scholar 

  16. Qaradakhi T, Matsoukas MT, Hayes A, Rybalka E, Caprnda M, Rimarova K, et al. Alamandine reverses hyperhomocysteinemia-induced vascular dysfunction via PKA-dependent mechanisms. Cardiovasc Ther. 2017;35:e12306.

  17. Alabsi W, Al-Obeidi FA, Polt R, Mansour HM. Organic solution advanced spray-dried microparticulate/nanoparticulate dry powders of lactomorphin for respiratory delivery: physicochemical characterization, in vitro aerosol dispersion, and cellular studies. Pharmaceutics. 2021;13:1–35.

    Article  Google Scholar 

  18. Alabsi W, Acosta MF, Al-Obeidi FA, Hay M, Polt R, Mansour HM. Synthesis, physicochemical characterization, in vitro 2d/3d human cell culture, and in vitro aerosol dispersion performance of advanced spray dried and co-spray dried angiotensin (1–7) peptide and pna5 with trehalose as microparticles/nanoparticles for ta. Pharmaceutics. 2021;13:1278. p

    Article  CAS  Google Scholar 

  19. Lowery JJ, Raymond TJ, Giuvelis D, Bidlack JM, Polt R, Bilsky EJ. In vivo characterization of MMP-2200, a mixed δ/μ opioid agonist, in mice. J Pharmacol Exp Ther. 2011;336:767–78.

    Article  CAS  Google Scholar 

  20. Bader M, Alenina N, Andrade-Navarro MA, Santos RA. Mas and its related G protein-coupled receptors, Mrgprs. Pharmacol Rev. 2014;66:1080–105.

    Article  CAS  Google Scholar 

  21. Shinohara T, Harada M, Ogi K, Maruyama M, Fujii R, Tanaka H, et al. Identification of a G protein-coupled receptor specifically responsive to β-alanine. J Biol Chem. 2004;279:23559–64.

    Article  CAS  Google Scholar 

  22. Crozier RA, Ajit SK, Kaftan EJ, Pausch MH. MrgD activation inhibits KCNQ/M-currents and contributes to enhanced neuronal excitability. J Neurosci. 2007;27:4492–6.

    Article  CAS  Google Scholar 

  23. Hrenak J, Paulis L, Simko F. Angiotensin A/Alamandine/MrgD Axis: Another Clue to Understanding Cardiovascular Pathophysiology. Int J Mol Sci. 2016;17:1098. https://doi.org/10.3390/ijms17071098.

  24. Nishimura S, Uno M, Kaneta Y, Fukuchi K, Nishigohri H, Hasegawa J, et al. MRGD, a MAS-related g-protein coupled receptor, promotes tumorigenisis and is highly expressed in lung cancer. PLoS One. 2012;7:1–8.

    Google Scholar 

  25. Bautzova T, Hockley JRF, Perez-Berezo T, Pujo J, Tranter MM, Desormeaux C, et al. 5-oxoETE triggers nociception in constipation-predominant irritable bowel syndrome through MAS-related G protein-coupled receptor D. Sci Signal. 2018;11:eaal2171.

    Article  CAS  Google Scholar 

  26. Dhanasekaran M, Palian MM, Alves I, Yeomans L, Keyari CM, Davis P, et al. Glycopeptides related to β-endorphin adopt helical amphipathic conformations in the presence of lipid bilayers. J Am Chem Soc. 2005;127:5435–48.

    Article  CAS  Google Scholar 

  27. Solá RJ, Griebenow K. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs 2010;24:9–21.

    Article  Google Scholar 

  28. Li Y, St. Louis L, Knapp BI, Muthu D, Anglin B, Giuvelis D, et al. Can amphipathic helices influence the CNS antinociceptive activity of glycopeptides related to β-endorphin? J Med Chem. 2014;57:2237–46.

    Article  CAS  Google Scholar 

  29. Lowery JJ, Yeomans L, Keyari CM, Davis P, Porreca F, Knapp BI, et al. Glycosylation improves the central effects of DAMGO. Chem Biol Drug Des. 2007;69:41–7.

    Article  CAS  Google Scholar 

  30. Moradi SV, Hussein WM, Varamini P, Simerska P, Toth I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem Sci [Internet]. 2016;7:2492–500. https://doi.org/10.1039/C5SC04392A.

    Article  CAS  Google Scholar 

  31. Mitchell SA, Pratt MR, Hruby VJ, Polt R. Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin. J Org Chem. 2001;66:2327–42.

    Article  CAS  Google Scholar 

  32. Egleton RD, Bilsky EJ, Tollin G, Dhanasekaran M, Lowery J, Alves I, et al. Biousian glycopeptides penetrate the blood-brain barrier. Tetrahedron Asymmetry. 2005;16:65–75.

    Article  CAS  Google Scholar 

  33. Bartlett MJ, Mabrouk OS, Szabò L, Flores AJ, Parent KL, Bidlack JM, et al. The Delta-Specific Opioid Gly- copeptide BBI-11008: CNS Penetration and Behavioral Analysis in a Pre-clinical Model of Levodopa-Induced Dyskinesia. Int J Mol Sci. 2021;22:20. https://doi.org/10.3390/ijms22010020.

  34. Schleifenbaum J. Alamandine and Its Receptor MrgD Pair Up to Join the Protective Arm of the Renin-Angiotensin System. Front Med (Lausanne). 2019;6:107. https://doi.org/10.3389/fmed.2019.00107.

  35. Tetzner A, Naughton M, Gebolys K, Eichhorst J, Sala E, Villacañas Ó, et al. Decarboxylation of Ang-(1–7) to Ala1-Ang-(1–7) leads to significant changes in pharmacodynamics. Eur J Pharmacol. 2018;833:116–23.

    Article  CAS  Google Scholar 

  36. Apostol CR, Hay M, Polt R. Glycopeptide drugs: A pharmacological dimension between "Small Molecules" and "Biologics". Peptides. 2020;131:170369. https://doi.org/10.1016/j.peptides.2020.170369. Epub 2020 Jul 13.

  37. Corporation P. CellTitre 96 AQueous non-radioactive cell proliferation assay. Tehnical Bull. 2006;313:45–45.

    Google Scholar 

  38. Alqahtani T, Kumarasamy VM, Huczyński A, Sun D. Salinomycin and its derivatives as potent RET transcriptional inhibitors for the treatment of medullary thyroid carcinoma. Int J Oncol. 2020;56:348–58.

    CAS  PubMed  Google Scholar 

  39. Lauf PK, Alqahtani T, Flues K, Meller J, Adragna NC. Interaction between Na-K-ATPase and Bcl-2 proteins BclXL and Bak. Am J Physiol—Cell Physiol. 2015;308:C51–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH NIDA 5UG3DA047717 (HMM and RP), R01HL137282 (HMM), R21AG054766 (HMM), R21AI135935 (HMM), P01HL103453 (HMM), and a SEOS TRIF grant award (HMM). This research was partially supported by the National Institute of Neurological Disorders and Stroke (NINDS) of the National Institutes of Health (NIH) under Award Number R01NS091238. We thank the Analytical & Biological Mass Spectrometry (ABMS) Core Facility, especially Yelena Feinstein and Krishna Parsawar, for their assistance with mass spectrometry analysis. The ABMS core facility is supported by the Research, Innovation, and Impact (RII), Technology and Research Initiative Fund (TRIF), and BIO5 Institute at the University of Arizona, Tucson, AZ. Finally, we wish to thank Prof. Laurence Hurley for his help and guidance at the University of Arizona, and particularly at the Dept. of Chemistry and Biochemistry, where he has been helpful in building bridges between chemistry and medicine since his arrival.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Polt.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alabsi, W., Jaynes, T., Alqahtani, T. et al. Synthesis of alamandine glycoside analogs as new drug candidates to antagonize the MrgD receptor for pain relief. Med Chem Res 31, 1135–1146 (2022). https://doi.org/10.1007/s00044-022-02881-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02881-3

Keywords

Navigation