Skip to main content
Log in

Synthesis, molecular docking, and biological evaluation of nitroimidazole derivatives as potent urease inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The objective of this study was to design new nitroimidazole-based derivatives as strong urease inhibitors for the treatment of H. pylori infections. New series of nitroimidazole derivatives, 4a–k, were synthesized by using TBTU as the catalyst and assayed as Jack bean urease inhibitors. The facile synthetic approach was employed for the preparation of targeted molecular designs in good to excellent yields, ranged from 65 to 92%. Accordingly, all the synthesized compounds, 4a–k (IC50 = 1.43–7.72 μM), were more potent than the standard urease inhibitors, thiourea, and hydroxyurea. Among the derivatives, 4d had the most urease inhibitor activity (IC50 = 1.43 μM), over 15-fold more potent than thiourea and 70-fold than hydroxyurea. True to form, the result of molecular docking studies was in good congruence with those obtained from in vitro tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Cave DR. Transmission and epidemiology of Helicobacter pylori. Am J Med. 1996;100:12S–8S. https://doi.org/10.1016/S0002-9343(96)80224-5

    Article  CAS  PubMed  Google Scholar 

  2. Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med. 2002;347:1175–86. https://doi.org/10.1056/NEJMra020542

    Article  CAS  PubMed  Google Scholar 

  3. Krzyżek P, Gościniak G, Fijałkowski K, Migdał P, Dziadas M, Owczarek A, et al. Potential of bacterial cellulose chemisorbed with anti-metabolites, 3-bromopyruvate or sertraline, to fight against helicobacter pylori lawn biofilm. Int J Mol Sci. 2020;21:9507 https://doi.org/10.3390/ijms21249507

    Article  CAS  PubMed Central  Google Scholar 

  4. Portal-Celhay C, Perez-Perez GI. Immune responses to helicobacter pylori colonization: mechanisms and clinical outcomes. Clin Sci. 2006;110:305–14. https://doi.org/10.1042/CS20050232

    Article  CAS  Google Scholar 

  5. Svane S, Sigurdarson JJ, Finkenwirth F, Eitinger T, Karring H. Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci Rep. 2020;10:1–4. https://doi.org/10.1021/ac60252a045

    Article  Google Scholar 

  6. Kafarski P, Talma M. Recent advances in design of new urease inhibitors: A review. J Adv Res. 2018;13:101–12. https://doi.org/10.1016/j.jare.2018.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mazzei L, Musiani F, Ciurli S. The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. J Bio Inorg Chem. 2020;18:1–7. https://doi.org/10.1007/s00775-021-01855-x

    Article  CAS  Google Scholar 

  8. Graham DY, Miftahussurur M. Helicobacter pylori urease for diagnosis of Helicobacter pylori infection: a mini review. J Adv Res. 2018;13:51–7. https://doi.org/10.1016/j.jare.2018.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hassan ST, Šudomová M. The development of urease inhibitors: what opportunities exist for better treatment of Helicobacter pylori infection in children? Children. 2017;4(1):2 https://doi.org/10.3390/children4010002

    Article  PubMed Central  Google Scholar 

  10. Hu LT, Foxall PA, Russell R, Mobley H. Purification of recombinant Helicobacter pylori urease apoenzyme encoded by ureA and ureB. Infect Immun. 1992;60:2657–66. PubMed:1612736

    Article  CAS  Google Scholar 

  11. Zerner B. Recent advances in the chemistry of an old enzyme, urease. Bioorg Chem. 1991;19:116–31. https://doi.org/10.1016/0045-2068(91)90048-T

    Article  CAS  Google Scholar 

  12. Rektorschek M, Buhmann A, Weeks D, Schwan D, Bensch KW, Eskandari S, et al. Acid resistance of Helicobacter pylori depends on the UreI membrane protein and an inner membrane proton barrier. Mol Microbiol. 2000;36:141–52. https://doi.org/10.1046/j.1365-2958.2000.01835.x

    Article  CAS  PubMed  Google Scholar 

  13. Arora R, Issar U, Kakkar R. Identification of novel urease inhibitors: pharmacophore modeling, virtual screening and molecular docking studies. J Biomol Struct Dyn. 2019;37:4312–26. https://doi.org/10.1080/07391102.2018.1546620

    Article  CAS  PubMed  Google Scholar 

  14. Schmalstig AA, Benoit SL, Misra SK, Sharp JS, Maier RJ. Noncatalytic antioxidant role for Helicobacter pylori urease. J Bacteriol. 2018;200(17):e00124–18. https://doi.org/10.1128/JB.00124-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Graham DY. Antibiotic resistance in Helicobacter pylori: implications for therapy. Gastroenterology. 1998;115:1272–7. https://doi.org/10.1016/S0016-5085(98)70100-3

    Article  CAS  PubMed  Google Scholar 

  16. Savarino V, Dulbecco P, De Bortoli N, Ottonello A, Savarino E. The appropriate use of proton pump inhibitors (PPIs): need for a reappraisal. Eur. J. Intern. Med. 2017;37:19–24. https://doi.org/10.1016/j.ejim.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  17. Chen P, Li L, Wang H, Zhao J, Cheng Y, Xie J, et al. Omeprazole, an inhibitor of proton pump, suppresses De novo lipogenesis in gastric epithelial cells. Biomed Pharmacother. 2020;130:110472 https://doi.org/10.1016/j.biopha.2020.110472

    Article  CAS  PubMed  Google Scholar 

  18. Hassan S, Majerová M, Šudomová M, Berchová K. Antibacterial activity of natural compounds-essential oils. Ceska Slov Farm. 2015;64(Dec):243–53. (6)Czech. PMID: 26841699

    CAS  PubMed  Google Scholar 

  19. Shmuely H, Topaz S, Berdinstein R, Yahav J, Melzer E. High metronidazole and clarithromycin resistance of helicobacter pylori isolated from previously treated and naïve patients. Isr Med Assoc J. 2020;22:562–6. PMID: 33070487

    Google Scholar 

  20. Gehlot V, Mahant S, Mukhopadhyay AK, Das K, De R, Kar P, et al. Antimicrobial susceptibility profiles of Helicobacter pylori isolated from patients in North India. J Glob Antimicrob Resist. 2016;5:51–6. PMID: 28224028

    Article  Google Scholar 

  21. Chaabane NB, Al-Adhba HS. Ciprofloxacin-containing versus clarithromycin-containing sequential therapy for Helicobacter pylori eradication: A randomized trial. Indian J Gastroenterol. 2015;34:68–72. https://doi.org/10.1007/s12664-015-0535-x

    Article  PubMed  Google Scholar 

  22. Bartnik W. Clinical aspects of Helicobacter pylori infection. Pol Arch Med Wewn. 2008;118:426–30. PMID: 18714738

    CAS  PubMed  Google Scholar 

  23. Wang Y, Zhao R, Wang B, Zhao Q, Li Z, Zhu-Ge L, et al. Sequential versus concomitant therapy for treatment of Helicobacter pylori infection: an updated systematic review and meta-analysis. Eur J Clin Pharmacol. 2018;74:1–13. https://doi.org/10.1007/s00228-017-2347-7

    Article  PubMed  Google Scholar 

  24. Hassan ST, Berchová K, Majerová M, Pokorná M, Švajdlenka E. In vitro synergistic effect of Hibiscus sabdariffa aqueous extract in combination with standard antibiotics against Helicobacter pylori clinical isolates. Pharm Biol. 2016;54:1736–40. https://doi.org/10.3109/13880209.2015.1126618

    Article  PubMed  Google Scholar 

  25. Hassan ST, Žemlička M. Plant‐derived urease inhibitors as alternative chemotherapeutic agents. Arch Pharm. 2016;349:507–22. https://doi.org/10.1002/ardp.201500019

    Article  CAS  Google Scholar 

  26. Kosikowska P, Berlicki Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: a patent review. Expert opin Ther Pat. 2011;21:945–57. https://doi.org/10.1517/13543776.2011.574615

    Article  CAS  PubMed  Google Scholar 

  27. Modolo LV, de Souza AX, Horta LP, Araujo DP, de Fatima A. An overview on the potential of natural products as ureases inhibitors: A review. J Adv Res. 2015;6:35–44. https://doi.org/10.1016/j.jare.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  28. Follmer C. Ureases as a target for the treatment of gastric and urinary infections. J Clin Pathol. 2010;63:424–30. https://doi.org/10.1136/jcp.2009.072595

    Article  CAS  PubMed  Google Scholar 

  29. Jain SK, Haider T, Kumar A, Jain A. Lectin-conjugated clarithromycin and acetohydroxamic acid-loaded PLGA nanoparticles: a novel approach for effective treatment of H. pylori. AAPS PharmSciTech. 2016;17:1131–40. https://doi.org/10.1208/s12249-015-0443-5

    Article  CAS  PubMed  Google Scholar 

  30. Umamaheshwari R, Jain N. Receptor-mediated targeting of lipobeads bearing acetohydroxamic acid for eradication of Helicobacter pylori. J control Release. 2004;99:27–40. https://doi.org/10.1016/j.jconrel.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  31. Griffith DP. Urease stones. Urol Res. 1979;7:215–21. https://doi.org/10.1007/BF00257208

    Article  CAS  PubMed  Google Scholar 

  32. Naureen S, Chaudhry F, Asif N, Munawar MA, Ashraf M, Nasim FH, et al. Discovery of indole-based tetraarylimidazoles as potent inhibitors of urease with low antilipoxygenase activity. Eur J Med Chem. 2015;102:464–70. https://doi.org/10.1016/j.ejmech.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  33. Cunha ES, Chen X, Sanz-Gaitero M, Mills DJ, Luecke H. Cryo-EM structure of Helicobacter pylori urease with an inhibitor in the active site at 2.0 Å resolution. Nat. Commun. 2021;12:1–8. https://doi.org/10.1038/s41467-020-20485-6

    Article  CAS  Google Scholar 

  34. Der Wouden V, Zwet V. nitroimidazole resistance in Helicobacter pylori. Aliment Pharmacol Ther. 2000;14:7–14. https://doi.org/10.1046/j.1365-2036.2000.00675.x

    Article  Google Scholar 

  35. Wani MY, Bhat AR, Azam A, Athar F. Nitroimidazolyl hydrazones are better amoebicides than their cyclized 1, 3, 4-oxadiazoline analogues: In vitro studies and Lipophilic efficiency analysis. Eur J Med Chem. 2013;64:190–9. https://doi.org/10.1016/j.ejmech.2013.03.034

    Article  CAS  PubMed  Google Scholar 

  36. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717 https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  37. Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev. 2016;101:89–98. https://doi.org/10.1016/j.addr.2016.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peytam F, Adib M, Mahernia S, Rahmanian-Jazi M, Jahani M, Masoudi B, et al. Isoindolin-1-one derivatives as urease inhibitors: Design, synthesis, biological evaluation, molecular docking and in-silico ADME evaluation. Bioorg Chem. 2019;87:1–11. https://doi.org/10.1016/j.bioorg.2019.02.051

    Article  CAS  PubMed  Google Scholar 

  39. Azizian H, Nabati F, Sharifi A, Siavoshi F, Mahdavi M, Amanlou M. Large-scale virtual screening for the identification of new Helicobacter pylori urease inhibitor scaffolds. J Mol Model. 2012;18:2917–27. https://doi.org/10.1007/s00894-011-1310-2

    Article  CAS  PubMed  Google Scholar 

  40. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hosseini FS, Amanlou M. Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: Virtual screening, molecular docking, and molecular dynamics simulation study. Life Sci. 2020;258:118205 https://doi.org/10.1016/j.lfs.2020.118205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laskowski RA, Swindells MB. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51:2778–86. https://doi.org/10.1021/ci200227u

    Article  CAS  PubMed  Google Scholar 

  43. Schrödinger LLC. The PyMol molecular graphics system. 2017.Available from: https://pymol.org

Download references

Acknowledgements

The research reported in this publication was supported by Elite Researcher Grant Committee under award number [996450] from the National Institute for Medical Research Development (NIMAD), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud Amanlou.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, M., Hamidian, E., Niasari-Naslaji, F. et al. Synthesis, molecular docking, and biological evaluation of nitroimidazole derivatives as potent urease inhibitors. Med Chem Res 30, 1220–1229 (2021). https://doi.org/10.1007/s00044-021-02727-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02727-4

Keywords

Navigation