Skip to main content
Log in

Biological targets of 92 alkaloids isolated from Papaver genus: a perspective based on in silico predictions

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

With its high level of phytochemical and botanical variability, Papaver genus contains several species with many subspecies yielding more than 170 alkaloids. Papaver species have been used as sedative, hypnotic, analgesic, and antidepressant. The aim of this study is to shed light on the structure–activity relationship of alkaloids isolated from Papaver genus. All alkaloids isolated from Papaver genus are listed according to their plant source. We identified the molecular targets of the 92 alkaloids from 10 different types of Papaver alkaloids (simple isoquinoline, benzylisoquinoline, proaporphine, aporphine, morphinane, promorphinane, protoberberine, phthalideisoquinoline, protopine, and rhoeadine) by using cheminformatic approach (Swiss Model). Hierarchical clustering heatmaps were generated by R programming language to visualize the in silico results. The research finding of this study could act as a guiding source for future natural product-based drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sariyar G. Biodiversity in the alkaloids of Turkish Papaver species. Pure Appl Chem. 2002:74(4):557–74.

  2. Nyman U, Bruhn JG. Papaver bracteatum—a summary of current knowledge. Planta Med. 1979;35:97–117.

    Article  CAS  Google Scholar 

  3. Bayazeid O, Eylem CC, Reçber T, Yalçın FN, Kır S, Nemutlu E. An LC-ESI-MS/MS method for the simultaneous determination of pronuciferine and roemerine in some Papaver species. J Chromatogr B. 2018;1096:223–227. https://doi.org/10.1016/j.jchromb.2018.08.020.

  4. Altundag E, Ozturk M. Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Procedia Soc Behav Sci. 2011;19:756–77. https://doi.org/10.1016/j.sbspro.2011.05.195.

    Article  Google Scholar 

  5. Akbulut S, Bayramoglu M. The trade and use of some medical and aromatic herbs in Turkey. Ethno Med. 7(2):67–77. https://doi.org/10.1080/09735070.2013.11886446.

  6. Gfeller D, Michielin O, Zoete V. Shaping the interaction landscape of bioactive molecules. Bioinformatics. 2013;29:3073–9. https://doi.org/10.1093/bioinformatics/btt540.

    Article  CAS  PubMed  Google Scholar 

  7. Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47:W357–64. https://doi.org/10.1093/nar/gkz382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hayta S, Polat R, Selvi S. Traditional uses of medicinal plants in Elazığ (Turkey). J Ethnopharmacol. 2014;154:613–23. https://doi.org/10.1016/j.jep.2014.04.026.

    Article  PubMed  Google Scholar 

  9. Bulut G, Bozkurt MZ, Tuzlaci E. The preliminary ethnobotanical study of medicinal plants in Uşak (Turkey). Marmara Pharm J. 2017;21:305–10.

  10. Ozturk M, Uysa I, Gucel S, Altundag E, Dogan Y, Baslar S. Medicinal uses of natural dye-yielding plants in Turkey. RJTA. 2013;16:69–80. https://doi.org/10.1108/RJTA-17-02-2013-B010.

  11. Kumarasamy Y, Byres M, Cox PJ, Jaspars M, Nahar L, Sarker SD. Screening seeds of some Scottish plants for free radical scavenging activity. Phytother Res. 2007;21:615–21.

    Article  Google Scholar 

  12. Yildirim B, Terzioglu O, Ozgokce F, Turkozu D. Ethnobotanical and pharmacological uses of some plants in the districts of Karpuzalan and Adiguzel (Van-Turkey). J Anim Vet Adv. 2008;7:873–8.

    Google Scholar 

  13. Hasplova K, Hudecova A, Miadokova E, Magdolenova Z, Galova E, Vaculcikova L, et al. Biological activity of plant extract isolated from Papaver rhoeas on human lymfoblastoid cell line. Neoplasma. 2010;58:386–91.

    Article  Google Scholar 

  14. Soulimani R, Younos C, Jarmouni-Idrissi S, Bousta D, Khalouki F, Laila A. Behavioral and pharmaco-toxicological study of Papaver rhoeas L. in mice. J Ethnopharmacol. 2001;74:265–74. https://doi.org/10.1016/S0378-8741(00)00383-4.

    Article  CAS  PubMed  Google Scholar 

  15. Danijela AK, Snezana SM, Milan NM, Aleksandra RZ. Phenolic contents, antioxidant and antimicrobial activity of Papaver rhoeas L. extracts from Southeast Serbia. J Med Plants Res. 2010;17:1727–32.

  16. Yildirim B, Terz oglu O, Ozgokce F, Turkozu D. Ethnobotanical and pharmacological uses of some plants in the districts of Karpuzalan and Adiguzel (Van-Turkey). J Anim Vet Adv. 2008;7:873–8.

  17. Tetik F, Civelek S, Cakilcioglu U. Traditional uses of some medicinal plants in Malatya (Turkey). J Ethnopharmacol. 2013;146:331–46. https://doi.org/10.1016/j.jep.2012.12.054.

    Article  PubMed  Google Scholar 

  18. Güneş S, Savran A, Paksoy MY, Koşar M, Çakılcıoğlu U. Ethnopharmacological survey of medicinal plants in Karaisalı and its surrounding (Adana-Turkey). J Herb Med. https://doi.org/10.1016/j.hermed.2017.04.002.

  19. Kurek J. Introductory chapter: alkaloids— their importance in nature and for human life. Alkaloids— their importance in nature and human life. 2019. IntechOpen; London, UK.

  20. Beaudoin GAW, Facchini PJ. Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta. 2014;240:19–32. https://doi.org/10.1007/s00425-014-2056-8.

    Article  CAS  PubMed  Google Scholar 

  21. Lundström J. Chapter 6 simple isoquinoline alkaloids. In: Brossi A, editor. The alkaloids: chemistry and pharmacology. 1983. p. 255–327. Academic Press; New York, USA.

  22. Menachery MD, Lavanier GL, Wetherly ML, Guinaudeau H, Shamma M. Simple isoquinoline alkaloids. J Nat Prod. 1986;49:745–78. https://doi.org/10.1021/np50047a001.

    Article  CAS  Google Scholar 

  23. Zhang J, Zhang C, Xu FC, Quesheng, Zhang QY, Tu PF, et al. Cholinesterase inhibitory isoquinoline alkaloids from Corydalis mucronifera. Phytochemistry. 2019;159:199–207. https://doi.org/10.1016/j.phytochem.2018.11.019.

    Article  CAS  PubMed  Google Scholar 

  24. Bermejo A, Protais P, Blazquez MA, Rao KS, Zafra-polo MC, Cortes D. Dopaminergic isoquinoline alkaloids from roots of Xylopia papuana. Nat Prod Lett. 1995;6:57–62. https://doi.org/10.1080/10575639508044088.

    Article  CAS  Google Scholar 

  25. Hagel JM, Facchini PJ. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell Physiol. 2013;54:647–72. https://doi.org/10.1093/pcp/pct020.

    Article  CAS  PubMed  Google Scholar 

  26. Honda T, Shigehisa H. Novel and efficient synthetic path to proaporphine alkaloids: total synthesis of (±)-stepharine and (±)-pronuciferine. Org Lett. 2006;8:657–9.

    Article  CAS  Google Scholar 

  27. Bayazeid O, Nemutlu E, Eylem CC, Yalçın FN. Neuroactivity of naturally occurring proaporphine alkaloid, pronuciferine. J Biochem Mol Toxicol. 2020; e22601. https://doi.org/10.1002/jbt.22601.

  28. Ju M, Wray D. Molecular identification and characterisation of the human eag2 potassium channel. FEBS Lett. 2002;524:204–10. https://doi.org/10.1016/s0014-5793(02)03055-7.

    Article  CAS  PubMed  Google Scholar 

  29. Shamma M, Slusarchyk WA. The aporphine alkaloids. Chem Rev. 1964;64:59–79. https://doi.org/10.1021/cr60227a004.

    Article  CAS  Google Scholar 

  30. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34:668–72.

  31. Bayazeid O, Nemutlu E, Eylem CC, İlhan M, Küpeli-Akkol E, Karahan H, et al. Neuroactivity of the naturally occurring aporphine alkaloid, roemerine. Nat Prod Res. 2020:1–6. https://doi.org/10.1080/14786419.2020.1830395.

  32. Pasternak GW. Pharmacological mechanisms of opioid analgesics. Clin Neuropharmacol. 1993;16:1–18.

    Article  CAS  Google Scholar 

  33. Davies SG, Goddard EC, Roberts PM, Russell AJ, Smith AD, Thomson JE, et al. Strategies for the construction of morphinan alkaloid AB-rings: regioselective Friedel-Crafts-type cyclisations of γ-aryl-β-benzoylamido acids with asymmetrically substituted γ-aryl rings. Tetrahedron Asymmetry. 2016;27:274–84. https://doi.org/10.1016/j.tetasy.2016.02.010.

    Article  CAS  Google Scholar 

  34. Da-Cunha EV, Fechinei IM, Guedes DN, Barbosa-Filho JM, Da Silva MS. Protoberberine alkaloids. Alkaloids Chem Biol. 2005;62:1–75. https://doi.org/10.1016/s1099-4831(05)62001-9.

  35. Rozwadowska MD. Secoisoquinoline alkaloids. The alkaloids: chemistry and pharmacology. 1988. pp. 231–306. Elsevier; San Diego, California, USA.

  36. Amritpal S, Sanjiv D, Navpreet K, Jaswinder S. Berberine: alkaloid with wide spectrum of pharmacological activities. J Nat Prod. 2010;3:64–75.

    Google Scholar 

  37. Blaskó G, Gula DJ, Shamma M. The phthalideisoquinoline alkaloids. J Nat Prod. 1982;45:105–22. https://doi.org/10.1021/np50020a001.

    Article  Google Scholar 

  38. Kardos J, Blaskó G, Kerekes P, Kovács I, Simonyi M. Inhibition of [3H]GABA binding to rat brain synaptic membranes by bicuculline related alkaloids. Biochem Pharmacol. 1984;33:3537–45. https://doi.org/10.1016/0006-2952(84)90134-5.

    Article  CAS  PubMed  Google Scholar 

  39. Anet F, Marion L. The structure of protopine methiodide: a correction. Can JChem. 1954;32:452–5.

    Article  CAS  Google Scholar 

  40. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2018;47:D1102–9. https://doi.org/10.1093/nar/gky1033.

    Article  PubMed Central  Google Scholar 

  41. Higham D, Higham N. MATLAB guide, vol. 150. Philadelphia, PA: SIAM; 2016.

  42. Maki MAA, Cheah S-C, Bayazeid O, Kumar PV. Cyclodextrin inclusion complex inhibits circulating galectin-3 and FGF-7 and affects the reproductive integrity and mobility of Caco-2 cells. Sci Rep. 2020;10:17468. https://doi.org/10.1038/s41598-020-74467-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ünsal Ç, Özbek B, Sarıyar G, Mat A. Antimicrobial activity of four annual Papaver species growing in Turkey. Pharm Biol. 2009;47:4–6.

    Article  Google Scholar 

  44. Kettenes-Van den Bosch J, Salemink C, Khan I. Biological activity of the alkaloids of Papaver bracteatum Lindl. J Ethnopharmacol. 1981;3:21–38.

    Article  CAS  Google Scholar 

  45. Jafarian Z, Eimani H, Azarnia M, Shahverdi AH, Eftekhari‐Yazdi P, Kamalinejad M. The effect of intra‐peritoneal administration of Papaver bracteatum Lindl. extract on development of NMRI mice oocytes treated with Doxorubicin. Reprod Med Biol. 2013;12:57–63.

    Article  Google Scholar 

  46. Mat A, Sariyar G, ¸.ünsal ç, Deliorman A, Atay M, Özhatay N. Alkaloids and bioactivity of Papaver dubium subsp. dubium and P. dubium subsp. laevigatum. Nat Prod Lett. 2000;14:205–10.

    Article  CAS  Google Scholar 

  47. Hijazi MA, El-Mallah A, Aboul-Ela M, Ellakany A. Evaluation of analgesic activity of Papaver libanoticum extract in mice: involvement of opioids receptors. Evid Based Complement Alternat Med. 2017; 8935085. https://doi.org/10.1155/2017/8935085.

  48. Istatkova R, Nikolaeva-Glomb L, Galabov A, Yadamsuren GO, Samdan J, Dangaa S, et al. Chemical and antiviral study on alkaloids from Papaver pseudocanescens M. Pop. Z Naturforsch C. 2012;67:22–8.

    Article  CAS  Google Scholar 

  49. Wind O, Christensen SB, Mølgaard P. Colouring agents in yellow and white flowered papaver radicatum in Northern Greenland. Biochem Syst Ecol. 1998;26:771–9. https://doi.org/10.1016/S0305-1978(98)00031-3.

    Article  CAS  Google Scholar 

  50. Middleton P, Stewart F, Al-Qahtani S, Egan P, O’Rourke C, Abdulrahman A, et al. Antioxidant, antibacterial activities and general toxicity of Alnus glutinosa, Fraxinus excelsior and Papaver rhoeas. Iran J Pharm Res. 2010:20(2):101–3.

  51. Bayazeid O, Bedir E, Yalcin FN. Ligand-based virtual screening and molecular docking of two cytotoxic compounds isolated from Papaver lacerum. Phytochem Lett. 2019;30:26–30.

    Article  CAS  Google Scholar 

  52. Morales P, Ferreira ICFR, Carvalho AM, Sánchez-Mata MC, Cámara M, Fernández-Ruiz V, et al. Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT Food Sci Technol. 2014;55:389–96. https://doi.org/10.1016/j.lwt.2013.08.017.

    Article  CAS  Google Scholar 

  53. Hasplova K, Hudecova A, Miadokova E, Magdolenova Z, Galova E, Vaculcikova L, et al. Biological activity of plant extract isolated from Papaver rhoeas on human lymfoblastoid cell line. Neoplasma. 2011;58:386–91.

    Article  CAS  Google Scholar 

  54. El SN, Karakaya S. Radical scavenging and iron-chelating activities of some greens used as traditional dishes in Mediterranean diet. Int J Food Sci Nutr. 2004;55:67–74. https://doi.org/10.1080/09637480310001642501.

    Article  PubMed  Google Scholar 

  55. Nabati F, Mojab F, Habibi-Rezaei M, Bagherzadeh K, Amanlou M, Yousefi B. Large scale screening of commonly used Iranian traditional medicinal plants against urease activity. DARU. 2012;20:72.

    Article  Google Scholar 

  56. Todorova T, Pesheva M, Gregan F, Chankova S. Antioxidant, antimutagenic, and anticarcinogenic effects of Papaver rhoeas L. extract on Saccharomyces cerevisiae. J Med Food. 2015;18:460–7. https://doi.org/10.1089/jmf.2014.0050.

    Article  PubMed  Google Scholar 

  57. Seyedan A, Alshawsh MA, Alshagga MA, Koosha S, Mohamed Z. Medicinal plants and their inhibitory activities against pancreatic lipase: a review. Evid Based Complement Alternat Med. 2015;2015:973143 https://doi.org/10.1155/2015/973143.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Golkar-Narenji A, Samadi F, Eimani H, Hasani S, Shahverdi AH, Eftekhari-Yazi P, et al. Effects of intraperitoneal administration of Papaver rhoeas L. extract on mouse ovaries. Anim Cells Syst. 2013;17:113–20.

    Article  Google Scholar 

  59. Lee I-K, Hwang BS, Kim D-W, Kim J-Y, Woo E-E, Lee Y-J, et al. Characterization of neuraminidase inhibitors in Korean Papaver rhoeas bee pollen contributing to anti-influenza activities in vitro. Planta Med. 2016;82:524–9.

    Article  CAS  Google Scholar 

  60. Osanloo N, Najafi-Abedi A, Jafari F, Javid F, Pirpiran M, Memar Jafari M-R, et al. Papaver Rhoeas L. hydroalcoholic extract exacerbates forced swimming test-induced depression in mice. Basic Cli Neurosci. 2016;7:195–202. https://doi.org/10.15412/J.BCN.03070304.

    Article  CAS  Google Scholar 

  61. Aboukhalaf A, El Amraoui B, Tabatou M, da Rocha JMF, Belahsen R. Screening of the antimicrobial activity of some extracts of edible wild plants in Morocco. Funct Foods Health Dis. 2020;10:265–73. https://doi.org/10.31989/ffhd.v10i6.718.

    Article  CAS  Google Scholar 

  62. Gürbüz İ, Üstün O, Yesilada E, Sezik E, Kutsal O. Anti-ulcerogenic activity of some plants used as folk remedy in Turkey. J Ethnopharmacol. 2003;88:93–7. https://doi.org/10.1016/S0378-8741(03)00174-0.

    Article  PubMed  Google Scholar 

  63. Sahraei H, Faghih-Monzavi Z, Fatemi SM, Pashaei-Rad S, Salimi SH, Kamalinejad M. Effects of Papaver rhoeas extract on the acquisition and expression of morphine-induced behavioral sensitization in mice. Phytother Res. 2006;20:737–41. https://doi.org/10.1002/ptr.1922.

    Article  PubMed  Google Scholar 

  64. Sahraei H, Fatemi SM, Pashaei-Rad S, Faghih-Monzavi Z, Salimi SH, Kamalinegad M. Effects of Papaver rhoeas extract on the acquisition and expression of morphine-induced conditioned place preference in mice. J Ethnopharmacol. 2006;103:420–4. https://doi.org/10.1016/j.jep.2005.08.022.

    Article  PubMed  Google Scholar 

  65. Pourmotabbed A, Rostamian B, Manouchehri G, Pirzadeh-Jahromi G, Sahraei H, Ghoshooni H, et al. Effects of Papaver rhoeas extract on the expression and development of morphine-dependence in mice. J Ethnopharmacol. 2004;95:431–5. https://doi.org/10.1016/j.jep.2004.08.022.

    Article  PubMed  Google Scholar 

  66. Hao DC, Gu X-J, Xiao PG. 6 - Phytochemical and biological research of Papaver pharmaceutical resources. In: Medicinal plants. 2015. pp. 217–51. Woodhead Publishing; Kidlington, UK.

  67. Bayazeid O, Yalcin F, İlhan M, Karahan H, Kupeli-Akkol E, Kelicen-Ugur P, et al. Analysis of antidepressant properties of some Papaver species by in vivo and in vitro methods. Planta Med. 2015;81:PW_137.

    Article  Google Scholar 

  68. Sharopov F, Valiev A, Gulmurodov I, Sobeh M, Satyal P, Wink M. Alkaloid content, antioxidant and cytotoxic activities of various parts of Papaver somniferum. Pharm Chem J. 2018;52:459–63. https://doi.org/10.1007/s11094-018-1839-9

    Article  CAS  Google Scholar 

  69. Calixto JB, Scheidt C, Otuki M, Santos ARS. Biological activity of plant extracts: novel analgesic drugs. Expert Opin Emerg Drugs. 2001;6:261–79. https://doi.org/10.1517/14728214.6.2.261.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Dr. Taufiq Rahman (Department of Pharmacology, University of Cambridge) for his tips in the cheminformatics part and Ayse G. Keskus (Dr. Ozlen Konu lab, Department of Molecular Biology and Genetic, Bilkent University) for helping with MATLAB code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Bayazeid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayazeid, O., Yalçın, F.N. Biological targets of 92 alkaloids isolated from Papaver genus: a perspective based on in silico predictions. Med Chem Res 30, 574–585 (2021). https://doi.org/10.1007/s00044-020-02663-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02663-9

Keywords

Navigation