Skip to main content

Advertisement

Log in

Topomer-CoMFA-based predictive modelling on 2,3-diaryl-substituted-1,3-thiazolidin-4-ones as non-nucleoside reverse transcriptase inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The reverse transcriptase enzyme has been identified as an attractive target to inhibit the HIV-1 proliferations. Studies about the structure activity relationship on a dataset of thiazolidin-4-ones were performed using the topomer-CoMFA. The obtained topomer-CoMFA model with steric and electrostatic field parameters based on two (labelled R1 and R2) fragments gave a statistically robust model (R 2 = 0.938; Q 2 = 0.719). The predictability of the developed model was assessed on a test set data with r 2pred  = 0.798. The results of topomer-CoMFA suggested that at R1 position, the large bulky groups at C-2 position with less electronegativity and small bulky groups with large electronegativity at C-6 position are favourable for bioactivity. The topomer-CoMFA results for electrostatic contour maps at R2 position, electron releasing groups at C-4, C-5 and C-6 position along with electronegative atoms at N1 and N3 of pyrimidine, N1 of pyridine or O1 of furan moiety, whereas steric contour maps favour the substitution of small bulky groups at the same position. Finally, the applicability domain of the model was defined on external dataset of thiazolidin-4-ones and the results further supported the reliability and robustness of topomer-CoMFA model, which could be further used for prediction of potential new thiazolidin-4-one analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Balzarini J (2004) Current status of the non-nucleoside reverse transcriptase inhibitors of human immunodeficiency virus type 1. Curr Top Med Chem 4:921–944

    Article  CAS  PubMed  Google Scholar 

  • Balzarini J, Orzeszko B, Maurin JK, Orzeszko A (2007) Synthesis and anti-HIV studies of 2-adamantyl-substituted thiazolidin-4-ones. Eur J Med Chem 42:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Balzarini J, Orzeszko-Krzesińska B, Maurin JK, Orzeszko A (2009) Synthesis and anti-HIV studies of 2-and 3-adamantyl-substituted thiazolidin-4-ones. Eur J Med Chem 44:303–311

    Article  CAS  PubMed  Google Scholar 

  • Barreca ML, Carotti A, Carrieri A, Chimirri A, Monforte AM, Calace MP, Rao A (1999) Comparative molecular field analysis (CoMFA) and docking studies of non-nucleoside HIV-1 RT inhibitors (NNIs). Bioorg Med Chem 7:2283–2292

    Article  CAS  PubMed  Google Scholar 

  • Barreca ML, Chimirri A, De Luca L, Monforte AM, Monforte P, Rao A, Zappala M, Balzarini J, De Clercq E, Pannecouque C, Witvrouw M (2001) Discovery of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agents. Bioorg Med Chem Lett 11:1793–1796

    Article  CAS  PubMed  Google Scholar 

  • Barreca ML, Balzarini J, Chimirri A, De Clercq E, De Luca L, Höltje HD, Höltje M, Monforte AM, Monforte P, Pannecouque C, Rao A, Zappala M (2002) Design, synthesis, structure–activity relationships, and molecular modeling studies of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV agents. J Med Chem 45:5410–5413

    Article  CAS  PubMed  Google Scholar 

  • Barreca ML, Chimirri A, De Clercq E, De Luca L, Monforte AM, Monforte P, Rao A, Zappala M (2003) Anti-HIV agents: design and discovery of new potent RT inhibitors. Il Farmaco 58:259–263

    Article  CAS  PubMed  Google Scholar 

  • Bush BL, Nachbar RB Jr (1993) Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA. J Comput Aided Mol Des 7:587–619

    Article  CAS  PubMed  Google Scholar 

  • Chimirri A, Grasso S, Molica C, Monforte AM, Monforte P, Zappala M, Bruno G, Nicolo F, Witvrouw M, Jonckeere H, Balzarini J, De Clercq E (1997) Structural features and anti-human immunodeficiency virus (HIV) activity of the isomers of 1-(2′, 6′-difluorophenyl)-1H,3H-thiazolo [3,4-a] benzimidazole, a potent non-nucleoside HIV-1 reverse transcriptase inhibitor. Antivir Chem Chemother 8:363–370

    CAS  Google Scholar 

  • Chimirri A, Grasso S, Monforte AM, Monforte P, Rao A, Zappala M, Bruno G, Nicolo F, Pannecouque C, Witvrouw M, De Clercq E (1998) Synthesis, structure and in vitro anti-human immunodeficiency virus activity of novel 3-methyl-1H, 3H-thiazolo [3,4-a] benzimidazoles. Antivir Chem Chemother 9:431–438

    CAS  PubMed  Google Scholar 

  • Chimirri A, Grasso S, Monforte P, Rao A, Zappala M, Monforte A, Pannecouque C, Witvrouw M, Balzarini J, De Clercq E (1999) Synthesis and biological activity of novel 1H,3H-thiazolo [3,4-a] benzimidazoles: non-nucleoside human immunodeficiency virus type 1 reverse transcriptase inhibitors. Antivir Chem Chemother 10:211–217

    CAS  PubMed  Google Scholar 

  • Cramer RD (2003) Topomer CoMFA: a design methodology for rapid lead optimization. J Med Chem 46:374–388

    Article  CAS  PubMed  Google Scholar 

  • Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  • Cramer RD, Cruz P, Stahl G, Curtiss WC, Campbell B, Masek BB, Soltanshahi F (2008) Virtual screening for R-groups, including predicted pIC50 contributions, within large structural databases, using topomer CoMFA. J Chem Inf Mod 48:2180–2195

    Article  CAS  Google Scholar 

  • Jilek RJ, Cramer RD (2004) Topomers: a validated protocol for their self-consistent generation. J Chem Inf Comput Sci 44:1221–1227

    Article  CAS  PubMed  Google Scholar 

  • Jonckheere H, Anne J, De Clercq E (2000) The HIV-1 reverse transcription (RT) process as target for RT inhibitors. Med Res Rev 20:129–154

    Article  CAS  PubMed  Google Scholar 

  • Murugesan V, Tiwari VS, Saxena R, Tripathi R, Paranjape R, Kulkarni S, Makwana N, Suryawanshi R, Katti SB (2011) Lead optimization at C-2 and N-3 positions of thiazolidin-4-ones as HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 19:6919–6926

    Article  CAS  PubMed  Google Scholar 

  • Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Aschman DJ, Holmberg SD (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338:853–860

    Article  PubMed  Google Scholar 

  • Prabhakar YS, Solomon VR, Rawal RK, Gupta MK, Katti SB (2004) CP-MLR/PLS directed structure–activity modeling of the HIV-1 RT inhibitory activity of 2,3-diaryl-1,3-thiazolidin-4-ones. QSAR Comb Sci 23:234–244

    Article  CAS  Google Scholar 

  • Rao A, Carbone A, Chimirri A, De Clercq E, Monforte AM, Monforte P, Pannecouque C, Zappala M (2002) Synthesis and anti-HIV activity of 2,3-diaryl-1,3-thiazolidin-4-(thi) one derivatives. Il Farmaco 57:747–751

    Article  CAS  PubMed  Google Scholar 

  • Rao A, Carbone A, Chimirri A, De Clercq E, Monforte AM, Monforte P, Pannecouque C, Zappala M (2003) Synthesis and anti-HIV activity of 2,3-diaryl-1,3-thiazolidin-4-ones. Il Farmaco 58:115–120

    Article  CAS  PubMed  Google Scholar 

  • Rao A, Balzarini J, Carbone A, Chimirri A, De Clercq E, Monforte AM, Monforte P, Pannecouque C, Zappala M (2004a) 2-(2,6-Dihalophenyl)-3-(pyrimidin-2-yl)-1,3-thiazolidin-4-ones as non-nucleoside HIV-1 reverse transcriptase inhibitors. Antivir Res 63:79–84

    Article  CAS  PubMed  Google Scholar 

  • Rao A, Balzarini J, Carbone A, Chimirri A, De Clercq E, Monforte AM, Monforte P, Pannecouque C, Zappala M (2004b) Synthesis of new 2,3-diaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Il Farmaco 59:33–39

    Article  CAS  PubMed  Google Scholar 

  • Rawal RK, Prabhakar YS, Katti SB, De Clercq E (2005) 2-(Aryl)-3-furan-2-ylmethyl-thiazolidin-4-ones as selective HIV-RT inhibitors. Bioorg Med Chem 13:6771–6776

    Article  CAS  PubMed  Google Scholar 

  • Rawal RK, Prabhakar YS, Katti SB (2007a) Molecular surface features in modeling the HIV-1 RT inhibitory activity of 2-(2, 6-disubstituted phenyl)-3-(substituted pyrimidin-2-yl)-thiazolidin-4-ones. QSAR Comb Sci 26:398–406

    Article  CAS  Google Scholar 

  • Rawal RK, Kumar A, Siddiqi MI, Katti SB (2007b) Molecular docking studies on 4-thiazolidinones as HIV-1 RT inhibitors. J Mol Mod 13:155–161

    Article  CAS  Google Scholar 

  • Rawal RK, Tripathi R, Katti SB, Pannecouque C, De Clercq E (2007c) Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Bioorg Med Chem 15:1725–1731

    Article  CAS  PubMed  Google Scholar 

  • Rawal RK, Tripathi R, Katti SB, Pannecouque C, De Clercq E (2007d) Synthesis and evaluation of 2-(2,6-dihalophenyl)-3-pyrimidinyl-1,3-thiazolidin-4-one analogues as anti-HIV-1 agents. Bioorg Med Chem 15:3134–3142

    Article  CAS  PubMed  Google Scholar 

  • Rawal RK, Tripathi RK, Katti SB, Pannecouque C, De Clercq E (2007e) Synthesis and biological evaluation of 2,3-diaryl substituted-1,3-thiazolidin-4-ones as anti-HIV agents. Med Chem 3:355–363

    Article  CAS  PubMed  Google Scholar 

  • Rawal RK, Tripathi R, Katti SB, Pannecouque C, De Clercq E (2008) Design and synthesis of 2-(2,6-dibromophenyl)-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Eur J Med Chem 43:2800–2806

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Esnouf R, Garman E, Somers D, Ross C, Kirby I, Keeling J, Darby G, Jones Y, Stuart D, Stammers D (1995) High resolution structures of HIV-1 RT from four RT-inhibitor complexes. Nat Struct Biol 2:293–302

    Article  CAS  PubMed  Google Scholar 

  • Schrodinger Suite 2012: Maestro, version 9.3, Schrödinger, LLC, New York, NY, 2012

  • Schrodinger Suite 2012: LigPrep, version 2.5, Schrödinger, LLC, New York, NY, 2012

  • Sweeney ZK, Klumpp K (2008) Improving non-nucleoside reverse transcriptase inhibitors for first-line treatment of HIV infection: the development pipeline and recent clinical data. Curr Opin Drug Discov Dev 11:458–470

    CAS  Google Scholar 

  • SYBYL-X 2.0, Tripos International, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA

  • Tarrago-Litvak L, Andreola ML, Nevinsky GA, Sarih-Cottin L, Litvak S (1994) The reverse transcriptase of HIV-1: from enzymology to therapeutic intervention. FASEB J 8:497–503

    CAS  PubMed  Google Scholar 

  • Tavel JA, Miller KD, Masur H (1999) Guide to major clinical trials of antiretroviral therapy in human immunodeficiency virus-infected patients: protease inhibitors, non-nucleoside reverse transcriptase inhibitors, and nucleotide reverse transcriptase inhibitors. Clin Infect Dis 28:643–676

    Article  CAS  PubMed  Google Scholar 

  • Turner BG, Summers MF (1999) Structural biology of HIV. J Mol Biol 285:1–32

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Hamatake R, Hong Z (2004) Clinical utility of current NNRTIs and perspectives of new agents in this class under development. Antivir Chem Chemother 15:121–134

    PubMed  Google Scholar 

Download references

Acknowledgments

The SK thankfully acknowledges the Council of Scientific and Industrial Research, New Delhi for financial support in the form of senior research fellowship. The authors are grateful to Director, Shri G.S. Institute of Technology and Science, Indore for providing the facility to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meena Tiwari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Tiwari, M. Topomer-CoMFA-based predictive modelling on 2,3-diaryl-substituted-1,3-thiazolidin-4-ones as non-nucleoside reverse transcriptase inhibitors. Med Chem Res 24, 245–257 (2015). https://doi.org/10.1007/s00044-014-1105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1105-y

Keywords

Navigation