Skip to main content
Log in

Molecular docking studies on 4-thiazolidinones as HIV-1 RT inhibitors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Flexible docking simulations were performed on two series of 4-thiazolidinones as HIV-1 reverse transcriptase (HIV-1 RT) inhibitors. This was done by analyzing the interaction of these compounds with the allosteric site of the HIV-1 reverse transcriptase enzyme. The binding scores for these compounds were also congruent with their anti-HIV activity. A good correlation between the predicted binding free energies and the experimentally observed inhibitory activities (EC50) suggest that the identified binding conformations of these inhibitors are reliable. The results of docking studies provide an insight into the pharmacophoric structural requirements for the HIV-1 RT inhibitory activity of this class of molecules.

Flexible docking simulations were performed to explore the binding mechanism of 4-thiazolidinones as HIV-1 reverse transcriptase (HIV-1 RT) inhibitors. The binding free energies of these compounds to HIV-1 RT were found to have a good correlation with the experimentally obtained inhibitory activities

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. De Clercq E (2005) J Med Chem 10:1297–1313

    Article  Google Scholar 

  2. Schafer W, Friebe WG, Leinert M, Merttens A, Poll T, von der Saal W, Zilch H, Nuber H, Ziegler ML (1993) J Med Chem 36:726–732

    Article  CAS  Google Scholar 

  3. Barreca ML, Balzarini J, Chimirri A, De Clercq E, Luca LD, Holtje MH, Holtje M, Monforte AM, Monforte P, Pannecouque C, Rao A, Zappala M (2002) J Med Chem 45:5410–5413

    Article  CAS  Google Scholar 

  4. Rao A, Balzarini J, Carbone A, Chimirri A, De Clercq E, Monforte AM, Monforte P, Pannecouque C, Zappala M (2004) Antiviral Res 63:79–84

    Article  CAS  Google Scholar 

  5. Prabhakar YS, Solomon VR, Rawal RK, Gupta MK, Katti SB (2004) QSAR & Combi Sci 23:234–244

    Article  CAS  Google Scholar 

  6. Rawal RK, Solomon VR, Prabhakar YS, Katti SB, De Clercq E (2005) Comb Chem High Throughput Screen 8:439–443

    Article  CAS  Google Scholar 

  7. Roy K, Leonard T (2005) QSAR & Comb Sci 24:579–592

    Article  CAS  Google Scholar 

  8. Barreca ML, Balzarini J, Chimirri A, De Clercq E, Luca LD, Holtje MH, Holtje M, Monforte AM, Monforte P, Pannecouque C, Rao A, Zappala M (2002) J Med Chem 45:5410–5413

    Article  CAS  Google Scholar 

  9. Prabhakar YS, Rawal RK, Gupta MK, Solomon VR, Katti SB (2005) Comb Chem High Throughput Screen 8:431–437

    Article  CAS  Google Scholar 

  10. InsightII 2000.1 Program (2000) Accelrys Inc, San Diego, California

  11. Sybyl 7.0 (2004) TRIPOS Inc, 1699 South Hanley Road, St. Louis, Missouri 63144, USA

  12. Gasteiger J, Marsili M (1980) Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  13. FlexX, version 1.13.5 (2004) BioSolveIT GmbH, Saint Augustin, Germany

  14. Rarey M, Kramer B, Lengauer T, Klebe G (1996) J Mol Biol 261:470–489

    Article  CAS  Google Scholar 

  15. Frankel EN, Waterhouse AL, Kinsella JE (1993) Lancet 341:1103–1104

    Article  CAS  Google Scholar 

  16. Ren J, Esnouf R, Hopkins A, Ross C, Jones Y, Stammers D, Stuart D (1995) Structure 3:915–926

    Article  CAS  Google Scholar 

  17. Ren J, Milton J, Weaver KL, Short SA, Stuart DI, Stammers DK (2000) Structure 8:1089–1094

    Article  CAS  Google Scholar 

  18. Ren J, Esnouf R, Garman E, Somers D, Ross C, Kirby I, Keeling J, Darby G, Jones Y, Stuart D (1995) Nat Struct Biol 2:293–302

    Article  CAS  Google Scholar 

  19. Böhm HJ (1998) J Comput Aided Mol Des 12:309

    Article  Google Scholar 

  20. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) J Comput Aided Mol Des 11:425–445

    Article  CAS  Google Scholar 

  21. Ewing TJA, Kuntz ID (1997) J Comput Chem 18:1175–1189

    Article  CAS  Google Scholar 

  22. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  23. Muegge I, Martin YC (1999) J Med Chem 42:791–804

    Article  CAS  Google Scholar 

  24. Mager PP (1997) Med Res Rev 17:235–276

    Article  CAS  Google Scholar 

  25. Tantillo C, Ding J, Jacobo-Molina A, Nanni RG, Boyer PL, Hughes SH, Pauwels R, Andries K, Janssen PA, Arnold E (1994) J Mol Biol 243:369–387

    Article  CAS  Google Scholar 

  26. Barreca, ML, Rao A, De Luca L, Zappala M, Monforte AM, Maga G, Pannecouque C, Balzarini J, De Clercq E, Chimirri A, Monforte P (2005) J Med Chem 48:3433–3437

    Article  CAS  Google Scholar 

  27. Ding J, Das K, Moereels H, Koymans L, Andries K, Janssen PA, Hughes SH, Arnold E (1995) Nat Struct Biol 92:407–415

    Article  Google Scholar 

  28. Das K, Levi PJ, Hughes SH, Arnold E (2005) Prog Biophys Mol Biol 88:209–231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Council of Scientific and Industrial Research (CSIR) funded network project CMM0017–Drug target development using in silico biology. The authors acknowledge Dr. Y.S. Prabhakar for critical reading of the manuscript. A.K. acknowledges CSIR for fellowship. C.D.R.I. communication no. of this manuscript is 6853.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setu B. Katti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawal, R.K., Kumar, A., Siddiqi, M.I. et al. Molecular docking studies on 4-thiazolidinones as HIV-1 RT inhibitors. J Mol Model 13, 155–161 (2007). https://doi.org/10.1007/s00894-006-0138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-006-0138-7

Keywords

Navigation